Correlations

Viscosity, Second *pVT* Virial Coefficient, and Diffusion of Binary Mixtures of Small Alkanes CH_4 , C_2H_6 , C_3H_8 , $n-C_4H_{10}$, $i-C_4H_{10}$, $n-C_5H_{12}$, $i-C_5H_{12}$, and $C(CH_3)_4$ Predicted by Means of an Isotropic Temperature-Dependent Potential

Lydia Zarkova,*^{,†} Uwe Hohm,[‡] and Milena Damyanova[†]

Institute of Electronics "Acad. E. Djakov", Bulgarian Academy of Sciences, Boulevard Tzarigradsko Shoussee 72, 1784 Sofia, Bulgaria, and Institut für Physikalische and Theoretische Chemie der TU Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig, Germany

The isotropic (*n*-6) Lennard-Jones temperature-dependent potential (LJTDP) together with the Hohm–Zarkova– Damyanova mixing rules is used to predict second interaction pVT virial coefficients $B_{AB}(T)$, interaction viscosities $\eta_{AB}(T)$, and diffusion coefficients $D_{AB}(T)$ for all 28 binary mixtures of the alkanes CH₄, C₂H₆, C₃H₈, *n*-C₄H₁₀, *i*-C₄H₁₀, *n*-C₅H₁₂, *i*-C₅H₁₂, and C(CH₃)₄ at low densities. Where possible, the obtained equilibrium and transport data are compared to existing measurements. In general, good agreement is found between experiment and theory. On the basis of these findings, fitting formulas and tables are presented which allow for a fast and reliable estimation of the aforementioned properties in the temperature range between (180 and 1200) K.

Introduction

It is nowadays impossible to overestimate the importance of multicomponent fluid mixtures containing alkanes since a dominant portion of methane and other lower alkanes can be found in any natural gas. It is, therefore, not astonishing that different journals like the Journal of Natural Gas Chemistry or Natural Gas & Electricity are specialized on technological, physical, and chemical aspects of natural gas behavior. Not only due to the broad range of different compositions of natural gas, reliable simulation techniques for predicting the thermophysical properties of these multicomponent mixtures are of the utmost importance.¹⁻⁶ In this context, it becomes clear that experimental and theoretical laboratory studies on the thermophysical behavior of pure alkanes and their well-defined mixtures provide indispensable basic knowledge. Since the costs of computer resources continuously decrease, there are many attempts to obtain, e.g., diffusion coefficients, liquid-vapor equilibrium curves, or second cross virial coefficients of binary, ternary, or even quaternary alkane mixtures by different simulation and estimation techniques.^{1,7–10} Most of these theoretical methods are based on a detailed description of the intermolecular interactions which are responsible for thermophysical properties like the second *pVT* virial coefficient *B*, viscosity η , or the diffusion coefficient D. To handle the vast number of different binary mixtures containing alkanes, mixing rules of the intermolecular interaction potential parameters are often used which relate the unlike interaction AB between two particles A and B to the like interactions AA and BB.¹¹ Although it is now accepted that the very simple Lorentz-Berthelot mixing rules do not give the correct potential parameters of unlike interactions, they are still widely used because in some cases they nevertheless allow for a reliable prediction of some thermophysical properties of binary mixtures.^{12–19} Despite their partial success, in many cases extensions of the Lorentz-Berthelot mixing rules or completely different combination rules give better results for binary alkane mixtures.²⁰⁻²⁵ In our recent work on the thermophysical properties of low-density binary alkane mixtures, we have developed a flexible extension of the physically reasonable Tang–Toennies mixing rules. ^{25,26} This new scheme is called Hohm-Zarkova-Damyanova (HZD) mixing rules. We have shown that in general these more sophisticated HZD mixing rules work better compared to the old Lorentz-Berthelot combination scheme as long as the thermophysical properties B, η , and D of binary mixtures are considered.²⁵ The present paper is a considerable extension of our preliminary study on the binary mixtures of small alkanes.²⁵ Here, a complete study of second interaction pVT virial coefficients $B_{AB}(T)$, interaction viscosities $\eta_{AB}(T)$, and binary diffusion coefficients $D_{AB}(T)$ for all 28 binary mixtures of the alkanes CH₄, C₂H₆, C₃H₈, n-C₄H₁₀, *i*-C₄H₁₀, *n*-C₅H₁₂, *i*-C₅H₁₂, and C(CH₃)₄ is presented. These properties are obtained via the HZD mixing rules applied to the intermolecular interaction potential parameters of the pure alkanes which are tabulated by Zarkova et al.²⁷ It should be mentioned that contrary to most of the other studies our potential model is able to account simultaneously for transport and equilibrium thermophysical properties.

Theoretical Section

Calculation of B_{AB} , η_{AB} , and D_{AB} . To obtain the properties B_{AB} , η_{AB} , and D_{AB} of the binary mixtures, we rely on our model of the Lennard-Jones temperature-dependent potential (LJTDP). The LJTDP is explained in detail in Hohm and Zarkova.²⁸ Briefly, the intermolecular interaction energy $U_{AB}(R, T)$ between two particles A and B is described via

^{*} Corresponding author. E-mail: lydia.zarkova@gmail.com. * Bulgarian Academy of Sciences.

^{*} Institut für Physikalische and Theoretische Chemie der TU Braunschweig.

1232 Journal of Chemical & Engineering Data, Vol. 53, No. 6, 2008

$$U_{\rm AB}(R,T) = \frac{\varepsilon_{\rm AB}^{\rm (eff)}(T)}{n_{\rm AB} - 6} \left[6 \left(\frac{R_{\rm mAB}^{\rm (eff)}(T)}{R} \right)^{n_{\rm AB}} - n_{\rm AB} \left(\frac{R_{\rm mAB}^{\rm (eff)}(T)}{R} \right)^{6} \right]$$
(1)

where $R_{\text{mAB}}^{(\text{eff})}(T)$ is an effective equilibrium distance; $\varepsilon_{\text{AB}}^{(\text{eff})}(T)$ is the potential well-depth at temperature T; and n_{AB} is the repulsive parameter and R the center-of-mass distance. For like interactions, we have A = B. In our model, the temperature dependence of $R_{mAA}^{(eff)}(T)$ is due to vibrational excitation of the intramolecular modes of the molecule. A statistical mechanical analysis of this excitation leads to the formulation $R_{mAA}^{(eff)}(T) =$ $R_{\text{mAA}}^{\text{(eff)}}(T = 0 \text{ K}) + \delta_0 \cdot f(T)$, where $R_{\text{mAA}}^{\text{(eff)}}(T = 0 \text{ K})$ and δ_0 (the first vibrationally excited level enlargement) are two of the four temperature-independent parameters of the LJTDP. The function f(T) can be calculated for any T from the known vibrational frequencies of the molecule.²⁸ The other two temperatureindependent parameters of the LJTDP are n_{AA} and $\varepsilon_{AA}^{(eff)}(T = 0 K)$. Once $R_{mAA}^{(eff)}(T)$, $\varepsilon_{AA}^{(eff)}(T)$, and n_{AA} are known for the pure substances, the parameters $R_{mAB}^{(eff)}(T)$, $\varepsilon_{AB}^{(eff)}(T)$, and n_{AB} describing the interaction between the substances. the interaction between unlike molecules can be deduced via mixing rules. In this work, we use our recently developed Hohm-Zarkova-Damyanova (HZD) mixing rules.²⁵ For the unlike interaction parameters we have

$$n_{\rm AB} = \frac{n_{\rm AA} + n_{\rm BB}}{2} \tag{2}$$

$$\frac{\left\{ R_{\text{mAB}}^{(\text{cff})}(T) \right)^{\mu_{\text{AB}} \ 6} = \frac{\left\{ 0.5 \left[\left(\varepsilon_{\text{AA}}^{(\text{eff})}(T) \right)^{\phi} \left(R_{\text{mAA}}^{(\text{eff})}(T) \right)^{\psi} + \left(\varepsilon_{\text{BB}}^{(\text{eff})}(T) \right)^{\phi} \left(R_{\text{mBB}}^{(\text{eff})}(T) \right)^{\psi} \right] \right\}^{1/\phi}}{\left(\varepsilon_{\text{AA}}^{(\text{eff})}(T) \varepsilon_{\text{BB}}^{(\text{eff})}(T) \right)^{1/2} \left(R_{\text{mAA}}^{(\text{eff})}(T) R_{\text{mBB}}^{(\text{eff})}(T) \right)^{3} \right) (3)$$

with

((aff)

n = -6

$$\phi = \frac{1}{1 + n_{AB}}, \quad \psi = \frac{n_{AB}}{1 + n_{AB}}$$
 (4)

and

$$\varepsilon_{AB}^{(eff)}(T) = \left(\varepsilon_{AA}^{(eff)}(T)\varepsilon_{BB}^{(eff)}(T)\right)^{1/2} \cdot \frac{\left(R_{mAA}^{(eff)}(T)R_{mBB}^{(eff)}(T)\right)^{3}}{\left(R_{mAB}^{(eff)}(T)\right)^{6}} \frac{2\alpha_{A}\alpha_{B}\left(C_{6}^{AA}C_{6}^{BB}\right)^{1/2}}{C_{6}^{AA}\alpha_{B}^{2} + C_{6}^{BB}\alpha_{A}^{2}}$$
(5)

where α_A and α_B are the dipole-polarizabilities and C_6^{AA} and C_6^{BB} are the dispersion-interaction energy constants of molecules A and B, respectively. These quantities can be obtained from direct measurements and experimentally determined dipole—oscillator strength distributions. For the alkanes under study, precise values or at least very reliable estimates of α and C_6 are available.²⁵

The measurable quantities of the binary mixtures are the second mixture pVT virial coefficient $B_{mix}(T)$, the viscosity of the mixture $\eta_{mix}(T)$, and the binary diffusion coefficient $D_{AB}(T)$. They are related to the corresponding properties describing the like (AA and BB) and unlike (AB) interactions via¹¹

$$B_{\rm mix}(T) = B_{\rm AA}(T)x_{\rm A}^2 + 2B_{\rm AB}(T)x_{\rm A}x_{\rm B} + B_{\rm BB}(T)x_{\rm B}^2 \qquad (6)$$

where for our spherically symmetric potential energy model we have for both, A = B and $A \neq B$

$$B_{\rm AB}(T) = -2\pi N_{\rm A} \int_{0}^{\infty} \left(\exp\left(-\frac{U_{\rm AB}(R,T)}{k_{\rm B}T}\right) - 1 \right) R^2 dR \quad (7)$$

 $k_{\rm B}$ and $N_{\rm A}$ being Boltzmann's and Avogadro's constants, respectively. Furthermore, we use

$$\eta_{\rm mix} = \frac{1 + Z_{\eta}}{X_{\eta} + Y_{\eta}} \tag{8}$$

with

$$X_{\eta} = \frac{x_{\rm A}^2}{\eta_{\rm AA}} + \frac{2x_{\rm A}x_{\rm B}}{\eta_{\rm AB}} + \frac{x_{\rm B}^2}{\eta_{\rm BB}}$$
(9)
$$\left[x_{\rm A}^2 M_{\rm A} - 2x_{\rm A}x_{\rm B} \left((M_{\rm A} + M_{\rm B})^2 \right) \left(-\eta_{\rm AB}^2 \right) \right]$$

$$Y_{\eta} = \frac{3}{5} A_{AB}^{*} \left\{ \frac{x_{A}}{\eta_{AA}} \frac{M_{A}}{M_{B}} + \frac{2x_{A}x_{B}}{\eta_{AB}} \left(\frac{(M_{A} + M_{B})}{4M_{A}M_{B}} \right) \left(\frac{\eta_{AB}}{\eta_{AA}\eta_{BB}} \right) + \frac{x_{B}^{2}}{\eta_{BB}} \frac{M_{B}}{M_{A}} \right\} (10)$$

$$Z_{\eta} = \frac{3}{5} A_{AB}^{*} \left\{ x_{A}^{2} \frac{M_{A}}{M_{B}} + 2x_{A} x_{B} \left[\frac{(M_{A} + M_{B})^{2}}{4M_{A} M_{B}} \left(\frac{\eta_{AB}}{\eta_{AA}} + \frac{\eta_{AB}}{\eta_{BB}} \right) - 1 \right] + x_{B}^{2} \frac{M_{B}}{M_{A}} \right\} (11)$$

In eqs 6 to 11, x_A and x_B are the mole fractions of the components A and B with molar masses M_A and M_B . η_{AA} and η_{BB} are the respective viscosities of the pure components A and B. $A_{AB}^* = \Omega_{AB}^{(2,2)*}/\Omega_{AB}^{(1,1)*}$ is the ratio of the reduced collision integrals $\Omega_{AB}^{(1,1)*}$ and $\Omega_{AB}^{(2,2)*}$. The latter ones are necessary for the description of the viscosity η_{AB} and diffusion coefficients D_{AB}

$$\eta_{\rm AB} = \frac{5}{16\pi N_{\rm A} \sigma_{\rm AB}^2(T) \Omega_{\rm AB}^{(2,2)^*}(T^*)} \sqrt{2\pi k_{\rm B} N_{\rm A} T \frac{M_{\rm A} M_{\rm B}}{M_{\rm A} + M_{\rm B}}}$$
(12)

$$D_{AB} = \frac{3}{5} \frac{k_{B} N_{A} T}{p} \frac{M_{A} + M_{B}}{M_{A} M_{B}} A^{*}_{AB} \eta_{AB}$$
(13)

where $T^* = k_{\rm B} T / \varepsilon_{\rm AB}^{\rm (eff)}(T)$ is the reduced temperature and $\sigma_{\rm AB}(T) = R_{\rm mAB}^{\rm (eff)}(T) (6/n_{\rm AB})^{1/(n_{\rm AB}-6)}$.

Results and Discussion

Description of Tables with $R_{mAB}^{(eff)}(T)$, $\varepsilon_{AB}^{(eff)}(T)$, $B_{AB}(T)$, $\eta_{AB}(T)$, and $D_{AB}(T)$. The potential parameters $R_{mAB}^{(eff)}(0) \equiv R_{mAB}^{(eff)}(T = 0 \text{ K})$, $\varepsilon_{AB}^{(eff)}(0) \equiv \varepsilon_{AB}^{(eff)}(T = 0 \text{ K})$, and n_{AB} for the pure alkanes (A = B) and their binary mixtures (A \neq B) are presented in Tables 1, 2, and 3, respectively. The calculated potential parameters $R_{mAB}^{(eff)}(T)$ and $\varepsilon_{AB}^{(eff)}(T)$ as well as the recommended thermophysical properties $B_{AB}(T)$, $\eta_{AB}(T)$, and $D_{AB}(T)$ are given for all 28 binary mixtures in the temperature range between (180 and 1200) K as Supporting Information. For a fast evaluation and compact representation, these calculated properties $R_{mAB}^{(eff)}(T)$, $\varepsilon_{AB}^{(eff)}(T)$, $B_{AB}(T)$, $\eta_{AB}(T)$, and $D_{AB}(T)$ are presented in the form of fitting formulas. $R_{mAB}^{(eff)}(T)$ is fitted to the dimensionless expression

$$\left[R_{\text{mAB}}^{\text{(eff)}}(T) - R_{\text{mAB}}^{\text{(eff)}}(0) \right] / (10^{-10} \text{ m}) = A_1 \exp(-A_2 / (T/\text{K})) + A_3 \exp(-A_4 / (T/\text{K}))$$
(14)

In the case of the dimensionless properties $P(T) \equiv [\varepsilon_{AB}^{(eff)}(T)/k_B]/K$, $\eta_{AB}(T)/(\mu Pa \cdot s)$, and $10^6 D_{AB}(T)/(m^2 \cdot s^{-1})$, we use the fitting formula

$$P(T) = \sum_{i=1}^{5} A_i (T/K)^{i-1}$$
(15)

whereas the most suitable function for the dimensionless second interaction virial coefficient was found to be

Table 1. Potential Parameters at T = 0 K for Pure Alkanes and Their Mixtures: Equilibrium Distance $10^{10} R_{mAB}^{(eff)}$ (T = 0 K)/m

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CH_4	C_2H_6	C_3H_8	$n-C_4H_{10}$	$i-C_4H_{10}$	$n-C_5H_{12}$	$i-C_5H_{12}$	$C(CH_3)_4$
$\frac{n - C_5 H_{12}}{i - C_5 H_{12}} = \frac{5.495}{5.537} = \frac{5.596}{5.617}$	CH ₄	3.868 C ₂ H ₆	4.158 4.447 C ₃ H ₈	4.399 4.689 4.930 <i>n</i> -C ₄ H ₁₀	4.576 4.866 5.107 5.284 <i>i</i> -C ₄ H ₁₀	4.616 4.905 5.147 5.324 5.363 <i>n</i> -C ₅ H ₁₂	4.682 4.971 5.213 5.390 5.429 5.495 <i>i</i> -C ₅ H ₁₂	4.703 4.992 5.234 5.411 5.450 5.516 5.537 C(CH)	4.783 5.072 5.314 5.491 5.530 5.596 5.617 5.697

	CH_4	C_2H_6	C ₃ H ₈	$n - C_4 H_{10}$	$i-C_4H_{10}$	$n-C_5H_{12}$	<i>i</i> -C ₅ H ₁₂	C(CH ₃) ₄
CH ₄	220.78 C ₂ H ₆	283.56 364.18 C ₃ H ₈	324.99 417.39 478.38 <i>n</i> -C ₄ H ₁₀	362.69 465.81 533.87 595.80 <i>i</i> -C ₄ H ₁₀	349.86 449.34 515.00 574.74 554.42 <i>n</i> -C ₅ H ₁₂	411.00 527.86 605.00 675.17 651.30 765.12 <i>i</i> -C ₅ H ₁₂	388.29 498.70 571.56 637.87 615.32 722.84 682.90	369.69 474.80 544.18 607.30 585.83 688.20 650.18
							$C(CH_3)_4$	619.02

Table 3. Potential Parameters for Pure Alkanes and Their Mixtures: Repulsive Parameter n_{AB}

	CH_4	C_2H_6	C_3H_8	n-C ₄ H ₁₀	i-C ₄ H ₁₀	n-C ₅ H ₁₂	$i-C_5H_{12}$	$C(CH_3)_4$
CH_4	21.63 C ₂ H ₆	21.96 22.28 C ₃ H ₈	22.88 23.20 24.12 <i>n</i> -C ₄ H ₁₀	21.37 21.69 22.61 21.10 <i>i</i> -C ₄ H ₁₀	22.18 22.50 23.42 21.91 22.72 <i>n</i> -C ₃ H ₁₂	26.06 26.38 27.30 25.79 26.60 30.48 <i>i</i> -C ₅ H ₁₂	22.24 22.56 23.48 21.97 22.78 26.66 22.84 C(CH ₃) ₄	29.46 29.78 30.70 29.19 30.00 33.88 30.06 37.28

$$B_{\rm AB}(T)/(\rm cm^3 \cdot \rm mol^{-1}) = \sum_{i=1}^4 A_i (T/\rm K - A_5)^{1-i} \qquad (16)$$

The fitting parameters for all 28 binary mixtures are given in Tables 4 and 5.

Comparison with Available Experimental Data of B_{AB} , B_{mix} , η_{AB} , η_{mix} , and D_{AB} . In Table 6, reference is given to N = 697 available experimental data points of B_{AB} , B_{mix} , η_{AB} , $\eta_{\rm mix}$, and $D_{\rm AB}$ for 20 binary mixtures measured by different methods between 1931 and 2001. The experimental data of the second *pVT* virial coefficient B_{AB} and B_{mix} are taken from the compilation of Dymond et al.²⁹ The viscosities η_{mix} and η_{AB} were measured by Trautz and Sorg,⁴² Abe et al.,^{43,65} Bicher and Katz,⁵¹ Giddings et al.,⁵² Kestin and Yata,⁵⁵ and Küchenmeister et al.⁶³ The tabulated diffusion coefficients in Table 6 are either obtained by direct measurements (Trautz and Müller,⁴⁴ Gotoh et al.,⁴⁷ Gover,⁴⁶ Arora et al.⁴⁸) or recalculated from measured viscosities via eq 13. This method of recalculation is widely used to obtain diffusion coefficients. It compensates the scarcity of experimentally measured D_{AB} values. As discussed by Marrero and Mason,⁶⁶ the most favorable cases for obtaining $D_{\rm AB}$ from measured $\eta_{\rm AB}$ are those where the two components have equal masses or where the heavier component is a trace gas. The accuracy is between 1 % and 13 % and is comparable to that of the most precisely measured diffusion data. Usually such recalculated data are considered as "experimental" ones.66

It is obvious that some mixtures like those of CH₄ with C₂H₆ and C₃H₈ have been explored more intensively than others (e.g., i-C₄H₁₀ with C₂H₆, n-C₄H₁₀, and C(CH₃)₄, or n-C₄H₁₀ with n-C₅H₁₂ and C(CH₃)₄). There are no measured thermophysical properties at all for eight binary mixtures: i-C₄H₁₀ with n-C₅H₁₂; i-C₅H₁₂ with C₂H₆, C₃H₈, n-C₄H₁₀, i-C₄H₁₀, n-C₅H₁₂, C(CH₃)₄; n-C₅H₁₂ with C(CH₃)₄. Our findings are now compared to the existing measurements. For those properties and mixtures which have not been considered in our preliminary paper on the binary alkane mixtures,²⁵ deviation plots are given in Figures 1 to 5. The remaining deviation plots are fully presented in the Supporting Information. We will first concentrate on the directly measurable properties $B_{\rm mix}$ and $\eta_{\rm mix}$, which are calculated according to eqs 6 and 12. In Figures 1 and 2 we present deviation plots $B_{\rm mix}$ for the mixtures of CH₄ with C₂H₆, C₃H₈, and C(CH₃)₄. In most cases, we observe that the deviations between experimental and calculated second virial coefficients $B_{\rm mix}^{\rm exptl} - B_{\rm mix}^{\rm calcd}$ lie inside the experimentally determined error bounds of the measurements. The same holds for $\eta_{\rm mix}$, where our calculated values generally deviate by no more than ± 1.5 % from the measured ones.

In many experimental papers, it is common practice to report on the unlike interaction properties B_{AB} and η_{AB} . In contrast to $B_{\rm mix}$ and $\eta_{\rm mix}$, they are independent of the composition of the binary mixture. However, they are not directly accessible by experiment and rely on the known properties B_{AA} and B_{BB} or η_{AA} and η_{BB} , respectively, of the pure components A and B. Therefore, their uncertainty inevitably is higher than that for $B_{\rm mix}$ and $\eta_{\rm mix}$, and their values depend on the actually chosen set of B_{AA} , B_{BB} , η_{AA} , and η_{BB} , respectively. In the case of B_{AB} , we note that the deviations $B_{AB}^{exptl} - B_{AB}^{calcd}$ are nearly always negative and that B_{AB}^{calcd} in some cases lies outside of the error bar of the experimentally obtained B_{AB}^{exptl} . This is especially the case for the mixtures $CH_4-n-C_5H_{12}$ and $CH_4-C(CH_3)_4$. However, as already mentioned⁶⁷ and discussed in detail by Zarkova et al.,²⁷ the works of Strein et al.⁵⁹ and Bellm et al.⁶⁰ dealing with binary mixtures of CH₄ and C(CH₃)₄ contain systematic errors. Therefore, they cannot serve as a test case for our results. Except for the mixture between CH₄ and n-C₄H₁₀, the agreement between the experimentally determined $\eta_{\rm AB}$ and our calculations is within \pm 1.5 %. In the case of CH_4 -*n*- C_4H_{10} , however, the difference is up to -5 % (see Figure 3).

Table 4. Fit Parameters According to Equations 14 to 16 for Binary Alkanes Mixtures. I. Mixtures of Type $C_mH_{2m+2}-C_nH_{2n+2}$, m = 1,2 and m < n < 6

							predicted accuracy of P
							$\frac{\Delta P = P}{\Delta P = P} = -$
mixture	property P	A_1	A_2	A_3	A_4	A_5	P_{calcd}
CH ₄ -C ₂ H ₆	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.060311	604.723	0.441260	2143.783	-	
	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$ -B (T)/cm ³ ·mol ⁻¹	276.198	$4.82846 \cdot 10^{-3}$	$-5.80560 \cdot 10^{-5}$ -7.30468 \cdot 10^{5}	$2.18536 \cdot 10^{-8}$ 3 86802 • 10 ⁸	-	$-3 \text{ cm}^3 \text{ mol}^{-1}$ to
	$-B_{AB}(I)/cm$ ·mor	/1.56/	4.07304 * 10	-7.39408 * 10	5.80892 * 10	-	$-6 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	-0.34240	$3.90434 \cdot 10^{-2}$	$-1.63679 \cdot 10^{5}$	$1.79564 \cdot 10^{-9}$	$1.03034 \cdot 10^{-12}$	-1% to 1%
CHC.H.	$10^{0}D/\text{m}^{2} \cdot \text{s}^{-1}$ $10^{10}R^{(\text{eff})}(T)/\text{m}$	-0.41262 0.093770	$2.78253 \cdot 10^{-9}$ 450 562	1.88155 • 10 ⁺ 0.552478	$-8.42940 \cdot 10^{-6}$ 1945 876	2.00051 • 10	5%
C11 ₄ C ₃ 11 ₈	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	303.799	$-2.04972 \cdot 10^{-2}$	$-5.81723 \cdot 10^{-5}$	$2.55141 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/\text{cm}^3 \cdot \text{mol}^{-1}$	93.237	$5.54799 \cdot 10^4$	$-2.38303 \cdot 10^{5}$	$6.60747 \cdot 10^8$	$-$ 2 25901 \cdot 10 ⁻¹²	$-8 \text{ cm}^3 \cdot \text{mol}^{-1}$
	η_{AB}/μ^{Pa*s} 10°D/m ² •s ⁻¹	-0.18587 -0.12684	$1.77622 \cdot 10^{-4}$	$1.58289 \cdot 10^{-4}$	$-7.36686 \cdot 10^{-8}$	$1.75540 \cdot 10^{-11}$	-2 % 10 0 % 5 %
$CH_4 - n - C_4H_{10}$	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.165569	338.175	0.897233	1749.189	-	
	$(\varepsilon_{AB}^{(en)}(T)/k_B)/K$ -B (T)/cm ³ ·mol ⁻¹	322.797	$-6.94531 \cdot 10^{-2}$ 7 53145 • 10 ⁴	$-6.42659 \cdot 10^{-3}$ 1 75452 • 10 ⁶	$3.66784 \cdot 10^{-8}$ 1.07872 \cdot 10^{9}	-	$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$
	η_{AB}/μ Pa•s	-0.23697	$3.15769 \cdot 10^{-2}$	$-7.53059 \cdot 10^{-6}$	$-6.36256 \cdot 10^{-9}$	$3.71874 \cdot 10^{-12}$	-5% to $-1%$
	$10^{6}D/m^{2} \cdot s^{-1}$	0.18279	$-3.36682 \cdot 10^{-3}$	$1.50501 \cdot 10^{-4}$	$-7.79116 \cdot 10^{-8}$	$1.94180 \cdot 10^{-11}$	-4% to $4%$
$CH_4 - l - C_4 H_{10}$	$10^{\circ} R_{\text{mAB}}^{(\text{cons})}(I)/\text{m}$ $(\epsilon^{(\text{eff})}(T)/k_{\text{p}})/\text{K}$	0.134286	$-6.01840 \cdot 10^{-2}$	$-4.85833 \cdot 10^{-5}$	$2.87887 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	118.451	$6.89254 \cdot 10^4$	$6.07152 \cdot 10^5$	8.68834 · 10 ⁸	-	$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$ 10°D/m ² · s ⁻¹	-0.29450 -0.04780	$3.25369 \cdot 10^{-2}$ -0.24208 \cdot 10^{-4}	$-1.11804 \cdot 10^{-5}$ 1 42803 • 10 ⁻⁴	$-2.49429 \cdot 10^{-9}$ $-7.22057 \cdot 10^{-8}$	$2.44378 \cdot 10^{-12}$ 1 81845 • 10 ⁻¹¹	0 % to 5 %
$CH_4 - n - C_5H_{12}$	$10^{-D/m} r_{mAB}^{(eff)}(T)/m$	0.159716	331.454	0.798395	1838.710	-	0 10 10 5 10
4 5 12	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K_{AB}$	357.543	$-7.81659 \cdot 10^{-2}$	$-4.04479 \cdot 10^{-5}$	$2.38127 \cdot 10^{-8}$	-	25 3 1 ⁻¹
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	134.473	8.48517 • 10 ⁻	$2.34468 \cdot 10^{\circ}$	1.46061 • 10 ⁵	-	$-25 \text{ cm}^3 \cdot \text{mol}^{-1}$ to
	$\eta_{AB}/\mu Pa \cdot s$	0.12934	$2.73508 \cdot 10^{-2}$	$-3.18691 \cdot 10^{-6}$	$-8.39940 \cdot 10^{-9}$	$4.02357 \cdot 10^{-12}$	50 cm mor
	$10^{6} D/m^{2} \cdot s^{-1}$	0.17597	$-2.24520 \cdot 10^{-3}$	$1.29680 \cdot 10^{-4}$	$-6.37117 \cdot 10^{-8}$	$1.51599 \cdot 10^{-11}$	
$CH_4 - l - C_5 H_{12}$	$10^{-K_{mAB}(T)/m}$ $(\varepsilon_{AB}^{(eff)}(T)/k_{p})/K$	335.408	$-8.61813 \cdot 10^{-2}$	$-1.59342 \cdot 10^{-5}$	$1,22434 \cdot 10^{-2}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	128.610	$8.02048 \cdot 10^4$	$1.20067 \cdot 10^{6}$	$1.22221 \cdot 10^9$	-	$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$ to
	m /uDoog	-0.12001	$2.02876 \cdot 10^{-2}$	$-6.17592 \cdot 10^{-6}$	$-6.13524 \cdot 10^{-9}$	$220722 \cdot 10^{-12}$	$20 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu_{1}a^{-s}s^{-1}$ 10°D/m ² •s ⁻¹	0.09152	$-2.08647 \cdot 10^{-3}$	$1.32503 \cdot 10^{-4}$	$-6.47368 \cdot 10^{-8}$	$1.55218 \cdot 10^{-11}$	
$CH_4 - C(CH_3)_4$	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.091762	443.697	0.377857	1960.703	-	
	$(\varepsilon_{AB}^{(cn)}(T)/k_B)/K$ - $B_{+D}(T)/cm^3 \cdot mol^{-1}$	318.029	$-3.32654 \cdot 10^{-2}$ 6.67405 \cdot 10 ⁴	$-2.13209 \cdot 10^{-9}$ $-1.18322 \cdot 10^{6}$	$1.06617 \cdot 10^{-6}$ 8.01571 \cdot 10^{8}	-	$-80 \text{ cm}^3 \cdot \text{mol}^{-1}$ to
	DAB(1), ent mor	1201017	-		-		$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	$4.80953 \cdot 10^{-2}$	$2.90504 \cdot 10^{-2}$ $2.00241 \cdot 10^{-3}$	$-9.62727 \cdot 10^{-6}$	$-1.38988 \cdot 10^{-9}$	$1.68007 \cdot 10^{-12}$ 1.26660 \cdot 10^{-11}	2 01 to 2 01
C ₂ H ₂ -C ₂ H ₂	$10 D/m \sqrt{s}$ $10^{10} R^{(eff)}_{mAB}(T)/m$	0.148290	493.130	0.988949	2021.637	-	-2 % 10 2 %
2 0 3 8	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	415.477	$-2.58561 \cdot 10^{-2}$	$-1.38058 \cdot 10^{-4}$	$6.07506 \cdot 10^{-8}$	-	. 2 . 1
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	135.473	$1.02341 \cdot 10^{-3}$ 2 55691 • 10 ⁻²	$2.62243 \cdot 10^{\circ}$ 9 52547 $\cdot 10^{-6}$	$1.83472 \cdot 10^{3}$ -1.95450 • 10 ⁻⁸	9.56163 7 10334 • 10 ⁻¹²	$-6 \text{ cm}^3 \cdot \text{mol}^4$
	$10^{6}D/m^{2} \cdot s^{-1}$	0.59431	$-5.79521 \cdot 10^{-3}$	$1.14291 \cdot 10^{-4}$	$-5.16403 \cdot 10^{-8}$	$1.10555 \cdot 10^{-11}$	5%
$C_2H_6 - n - C_4H_{10}$	$10^{10} R_{mAB}^{(eff)}(T)/m$	0.211386	372.235	1.321383	1840.941	-	
	$(\mathcal{E}_{AB}^{(AB)}(T)/\mathcal{K}_{B})/K$ $-B_{AB}(T)/cm^{3} \cdot mol^{-1}$	454.595	$-9.60761 \cdot 10^{-1}$	$-1.39046 \cdot 10$ 4 03662 • 10 ⁶	$7.44028 \cdot 10^{-6}$ 2.22205 • 10 ⁹	- 18.11643	$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	0.78055	$2.20107 \cdot 10^{-2}$	$1.58986 \cdot 10^{-5}$	$-2.57624 \cdot 10^{-8}$	$9.21859 \cdot 10^{-12}$	-2% to $0%$
СН-іСН	$10^{\circ}D/m^2 \cdot s^{-1}$ $10^{10}P^{(eff)}(T)/m$	0.77783	$-7.66858 \cdot 10^{-3}$	$1.05139 \cdot 10^{-4}$	$-5.03673 \cdot 10^{-8}$	$1.08163 \cdot 10^{-11}$	3%
$C_2 \Pi_6 l^- C_4 \Pi_{10}$	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	433.325	$-8.25149 \cdot 10^{-2}$	$-1.18460 \cdot 10^{-4}$	$6.29765 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	165.568	$1.21102 \cdot 10^{5}$	$2.46970 \cdot 10^{6}$	$1.82468 \cdot 10^9$	18.26227	
	$\eta_{AB}/\mu Pa \cdot s$ 10°D/m ² · s ⁻¹	0.63865 0.64917	$2.34/90 \cdot 10^{-2}$ -6 45270 $\cdot 10^{-3}$	$1.16949 \cdot 10^{-5}$ $1.02202 \cdot 10^{-4}$	$-2.188/9 \cdot 10^{-8}$ -4.91889 \cdot 10^{-8}	$8.066/2 \cdot 10^{-11}$ 1.09858 \cdot 10^{-11}	-1% to 6%
$C_2H_6 - n - C_5H_{12}$	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.203492	364.726	1.227504	1909.053	-	1 /0 00 0 /0
	$(\varepsilon_{AB}^{(en)}(T)/k_B)/K_B$	505.824	-0.10672	$-1.16879 \cdot 10^{-4}$	$6.09736 \cdot 10^{-8}$	-	$-50 \text{ cm}^3 \text{ mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	1.03927	$1.99225 \cdot 10^{-2}$	$1.45667 \cdot 10^{-5}$	$-2.19126 \cdot 10^{-8}$	$7.48975 \cdot 10^{-12}$	50 cm · mor
	$10^{6}D/m^{2} \cdot s^{-1}$	0.64380	$-5.62162 \cdot 10^{-3}$	$8.82900 \cdot 10^{-5}$	$-3.94321 \cdot 10^{-8}$	$7.95049 \cdot 10^{-12}$	
$C_2H_6 - i - C_5H_{12}$	$10^{-6} K_{mAB}(T)/m$ $(\epsilon^{(eff)}(T)/k_r)/K$	0.228300 478.720	401.436 -0.11767	$-8.14788 \cdot 10^{-5}$	2007.494 $4.42540 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	180.254	$1.41482 \cdot 10^{5}$	$3.83178 \cdot 10^{6}$	$2.56554 \cdot 10^9$	20.58290	
	$\eta_{AB}/\mu Pa \cdot s$ 10°D/m ² · s ⁻¹	0.86093	$2.07456 \cdot 10^{-2}$	$1.51020 \cdot 10^{-5}$ 0.12080 • 10^{-5}	$-2.32490 \cdot 10^{-8}$ -4.07758 \cdot 10^{-8}	$8.10206 \cdot 10^{-12}$ 8.20483 \cdot 10^{-12}	
$C_2H_6-C(CH_2)_4$	$10^{10} R_{mAB}^{(eff)}(T)/m$	0.045573	487.313	9.12060 • 10 ° 0.814464	-4.07758 • 10 ° 2041.884	0.30465 • 10 · · ·	
2 0 -(3)4	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	450.455	$-4.22542 \cdot 10^{-2}$	$-9.48295 \cdot 10^{-5}$	$4.19641 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$ $n_{AB}/\mu Pa \cdot s$	1/0.028	$1.24619 \cdot 10^{-3}$ 2 26770 • 10^{-2}	$1.243119 \cdot 10^{\circ}$ 6 82366 • 10 ⁻⁶	$1.97243 \cdot 10^{9}$ -1 46848 • 10 ⁻⁸	18.43639 5 32409 • 10 ⁻¹²	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.35965	$-2.91837 \cdot 10^{-3}$	$8.15930 \cdot 10^{-5}$	$-3.53375 \cdot 10^{-8}$	$7.47623 \cdot 10^{-12}$	0 % to 4 %

In Figures 4 and 5, two deviation plots for D_{AB} are presented for various mixtures of $i-C_4H_{10}$ and $C(CH_3)_4$ with some of the other lower alkanes. As for the viscosities η_{AB} , we do not give any error bars to the experimental results. The stated accuracy of 1 % seems to be too small in many cases. Arora et al.⁴⁸ have measured diffusion coefficients D_{AB} in the temperature range between (275 and 323) K and gave their results in the form of fitting polynomials. All the other experimental data are given as a set of single data points. The diffusion coefficients measured by Arora et al.⁴⁸ for mixtures of CH₄ with C₂H₆, C₃H₈, and *n*-C₄H₁₀ are well within \pm 5 % of our calculations. Trautz and Müller⁴⁴ have directly measured binary diffusion coefficients *D*_{AB} for CH₄-C₂H₆, CH₄-C₃H₈, and C₂H₆-C₃H₈. Their data in general show the largest deviation from our

Table 5. Fit Parameters According to Equations 14 to 16 for Binary Alkanes Mixtures. II. Mixtures of Type $C_mH_{2m+2}-C_nH_{2n+2}$, $2 \le m \le 6$ and $m \le n \le 6$

							predicted accuracy of <i>P</i>
mixture	property	Α.	Aa	Aa	A.	Ar	$\Delta P = P_{\text{exptl}} - P_{\text{exptl}}$
С Н _ п С Н	$10^{10}p(\text{eff}) (T)/m$	0.251867	370.030	1 /36082	1818 205	5	- calcu
$C_{3}\Pi_{8}$ <i>n</i> - $C_{4}\Pi_{10}$	$(\varepsilon_{\rm eff}^{\rm (eff)}(T)/k_{\rm p})/K$	540.913	-0.14967	$-1.39033 \cdot 10^{-4}$	$8.23275 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	209.322	$1.66048 \cdot 10^4$	$2.86037 \cdot 10^{6}$	$2.60659 \cdot 10^9$	34.76575	$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$ to
							$10 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	1.24216	$1.77053 \cdot 10^{-2}$	$2.21359 \cdot 10^{-5}$	$-2.90245 \cdot 10^{-8}$	$9.68923 \cdot 10^{-12}$ 7 20718 $\cdot 10^{-12}$	-1% to 2%
$C_{-}H_{-}-i_{-}C_{-}H_{-}$	$10^{-}D/\text{m} \cdot \text{s}$ $10^{10}R^{(\text{eff})}(T)/\text{m}$	0.77914	-7.02604 • 10 328 951	8.09473 • 10 1 23484	-3.65192 • 10 1747 681	7.20718 • 10 -	2 %
03118 1 041110	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	516.764	-0.13207	$-1.19037 \cdot 10^{-4}$	$7.04585 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	202.812	$1.57012 \cdot 10^{5}$	$1.46761 \cdot 10^{6}$	$2.20477 \cdot 10^9$	33.93285	
	$\eta_{AB}/\mu Pa \cdot s$	1.09383	$1.90812 \cdot 10^{-2}$	$1.85159 \cdot 10^{-5}$	$-2.59218 \cdot 10^{-8}$	$8.83681 \cdot 10^{-12}$	0 % to 1 %
C H = n C H	$10^{\circ}D/\text{m}^{2} \cdot \text{s}^{-1}$ $10^{10}R^{(\text{eff})}(T)/\text{m}$	0.67810	-6.14821 • 10 °	1.90561 • 10 5	-3.60180 • 10 °	7.46295 • 10 · · 2	
C3118 <i>n</i> -C511 ₁₂	$(\varepsilon_{AB}^{(eff)}(T)/k_{\rm P})/K$	606.230	-0.16565	$-1.16577 \cdot 10^{-4}$	$6.89921 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	226.092	$1.84866 \cdot 10^{5}$	$2.278908 \cdot 10^{6}$	$3.01512 \cdot 10^9$	43.62552	$-20 \text{ cm}^3 \cdot \text{mol}^{-1}$ to
							$0 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$ 10°D/m ² · c ⁻¹	1.36556	$1.72174 \cdot 10^{-3}$	$1.74339 \cdot 10^{-5}$	$-2.20025 \cdot 10^{-8}$	$6.93424 \cdot 10^{-12}$	
$C_{-}H_{-}-i_{-}C_{-}H_{-}$	$10 D/111 \cdot s$ $10^{10} R^{(eff)} (T)/m$	0.37313	-4.37043 • 10 394 852	1 359527	-2.39983 • 10 1960 988	4.55467 • 10	
03118 1 051112	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	575.704	-0.17555	$-7.85080 \cdot 10^{-5}$	$5.05818 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	219.680	$1.82413 \cdot 10^{5}$	$2.23802 \cdot 10^{6}$	$3.03241 \cdot 10^9$	38.76052	
	$\eta_{AB}/\mu Pa \cdot s$	1.28987	$1.71478 \cdot 10^{-2}$	$1.99663 \cdot 10^{-5}$	$-2.51236 \cdot 10^{-8}$	$8.09860 \cdot 10^{-12}$	1 ~ ~
C = -C(C =)	$10^{\circ}D/m^2 \cdot s$ $10^{10}P^{(eff)}(T)/m$	0.62680	$-5.35488 \cdot 10^{-5}$	6.86305 · 10 ·	$-2.79357 \cdot 10^{\circ}$	4.93695 · 10	-4 % to 8 %
$C_3 \Pi_8 - C(C \Pi_3)_4$	$(\varepsilon^{(eff)}(T)/k_{\pi})/K$	541 749	$-8.62576 \cdot 10^{-2}$	$-1.00298 \cdot 10^{-4}$	$502072 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/\text{cm}^3 \cdot \text{mol}^{-1}$	208.128	$1.64598 \cdot 10^5$	$1.11710 \cdot 10^4$	$2.43900 \cdot 10^9$	35.49813	
	$\eta_{AB}/\mu Pa \cdot s$	1.11291	$1.97535 \cdot 10^{-2}$	$1.09628 \cdot 10^{-5}$	$-1.64984 \cdot 10^{-8}$	$5.45122 \cdot 10^{-12}$	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.37353	$-2.77726 \cdot 10^{-3}$	$6.16194 \cdot 10^{-5}$	$-2.42669 \cdot 10^{-8}$	$4.45381 \cdot 10^{-12}$	0 % to 6 %
$n - C_4 H_{10} - i - C_4 H_{10}$	$10^{10} R_{mAB}^{(cn)}(T)/m$	0.294024	310.904 -0.22477	1.585166 -1.06012 • 10 ⁻⁴	1/03.787 8 11082 • 10 ⁻⁸	-	
	$(\mathcal{E}_{AB}(T)/\mathcal{K}_{B})/\mathcal{K}$ $-B_{AB}(T)/\mathcal{Cm}^{3} \cdot \text{mol}^{-1}$	248 839	$1.96264 \cdot 10^5$	$1.56997 \cdot 10^6$	$2.73362 \cdot 10^9$	- 44 45207	$3 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	1.38175	$1.53608 \cdot 10^{-2}$	$2.57124 \cdot 10^{-5}$	$-3.19082 \cdot 10^{-8}$	$1.05270 \cdot 10^{-11}$	-1% to 1.5%
	$10^{6}D/m^{2} \cdot s^{-1}$	0.75926	$-6.90534 \cdot 10^{-3}$	$6.99766 \cdot 10^{-5}$	$-3.21407 \cdot 10^{-8}$	$6.37922 \cdot 10^{-12}$	80 %
$n-C_4H_{10}-n-C_5H_{12}$	$10^{10} R_{mAB}^{(eff)}(T)/m$	0.320039	335.980	1.679610	1797.760	-	
	$(\mathcal{E}_{AB}^{(CD)}(I)/k_B)/K$ -B $(T)/cm^3 \cdot mol^{-1}$	087.859	-0.2/3/3 2 28759 • 10 ⁵	$-1.03845 \cdot 10^{-1}$	$8.22331 \cdot 10^{\circ}$ 3.76262 • 10 ⁹	- 54 01403	$-40 \text{ cm}^3 \cdot \text{mol}^{-1}$ to
	$D_{AB}(I)/CIII$ IIIOI	277.043	2.20757 10	2.0)))) 10	5.70202 10	54.71405	$-0 \text{ cm}^3 \cdot \text{mol}^{-1}$
	$\eta_{AB}/\mu Pa \cdot s$	1.59481	$1.45523 \cdot 10^{-2}$	$2.19296 \cdot 10^{-5}$	$-2.51451 \cdot 10^{-8}$	$7.61914 \cdot 10^{-12}$	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.61311	$-4.92527 \cdot 10^{-3}$	$5.64069 \cdot 10^{-5}$	$-2.20815 \cdot 10^{-8}$	$3.30942 \cdot 10^{-12}$	
$n - C_4 H_{10} - i - C_5 H_{12}$	$10^{10} R_{mAB}^{(cn)}(T)/m$	0.342976	357.376	1.690568 -6.50200 • 10^{-5}	1853.496	-	
	$(\mathcal{E}_{AB}(T)/\mathcal{K}_{B})/\mathcal{K}$ $-B_{+D}(T)/cm^{3} \cdot mol^{-1}$	268 546	$2.26160 \cdot 10^5$	$1.73610 \cdot 10^{6}$	$3.68094 \cdot 10^9$	- 50.76393	
	$\eta_{AB}/\mu Pa \cdot s$	1.57267	$1.38708 \cdot 10^{-2}$	$2.60155 \cdot 10^{-5}$	$-2.96638 \cdot 10^{-8}$	$9.22298 \cdot 10^{-12}$	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.66887	$-5.71271 \cdot 10^{-3}$	$5.91196 \cdot 10^{-5}$	$-2.34763 \cdot 10^{-8}$	$3.67858 \cdot 10^{-12}$	
$n - C_4 H_{10} - C(CH_3)_4$	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/{\rm m}$	0.249612	367.930	1.257716	1803.773	-	
	$(\epsilon_{AB}^{\prime}(T)/\kappa_{B})/\kappa$ - $R_{\star p}(T)/cm^{3} \cdot mol^{-1}$	259 492	-0.17276 2 08924 • 10 ⁵	$-1.07392 \cdot 10$ 6 84221 • 10 ⁵	$3.18275 \cdot 10^9$	- 46 27762	
	$\eta_{AB}/\mu Pa \cdot s$	1.32787	$1.71716 \cdot 10^{-2}$	$1.55163 \cdot 10^{-5}$	$-1.99427 \cdot 10^{-8}$	$6.28760 \cdot 10^{-12}$	
	$10^{6} D/m^{2} \cdot s^{-1}$	0.42631	$-3.33418 \cdot 10^{-3}$	$5.31666 \cdot 10^{-5}$	$-2.08888 \cdot 10^{-8}$	$3.50783 \cdot 10^{-12}$	15 %
$i - C_4 H_{10} - n - C_5 H_{12}$	$10^{10} R_{mAB}^{(eff)}(T)/m$	0.289441	308.106	1.477818	1743.132	-	
	$(\mathcal{E}_{AB}^{(AB)}(T)/\mathcal{K}_{B})/\mathbf{K}$ - $\mathcal{B}_{AB}^{(T)}(\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1})$	059.222 269.340	-0.24815 2 19311 • 10 ⁵	$-8.69952 \cdot 10^{-5}$ 7 70084 • 10 ⁵	$7.04144 \cdot 10^{\circ}$ 3 30292 • 10 ⁹	- 53 17794	
	$\eta_{AB}/\mu Pa \cdot s$	1.48470	$1.54351 \cdot 10^{-2}$	$1.98680 \cdot 10^{-5}$	$-2.36831 \cdot 10^{-8}$	$7.33474 \cdot 10^{-12}$	
	$10^{6} D/m^{2} \cdot s^{-1}$	0.54747	$-4.40415 \cdot 10^{-3}$	$5.53739 \cdot 10^{-5}$	$-2.19303 \cdot 10^{-8}$	$3.52195 \cdot 10^{-12}$	
$i - C_4 H_{10} - i - C_5 H_{12}$	$10^{10} R_{mAB}^{(eff)}(T)/m$	0.310289	329.400	1.484490	1798.144	-	
	$(\varepsilon_{AB}^{(cn)}(T)/k_B)/K$ -B (T)/cm ³ ·mol ⁻¹	626.700	-0.25359 2 16438 • 10 ⁵	$-5.095467 \cdot 10^{-2}$	$5.2098/ \cdot 10^{\circ}$ 3.23621 • 10 ⁹	- 49.04756	
	n_{AB}/μ Pa•s	1.44389	$1.50035 \cdot 10^{-2}$	$2.32692 \cdot 10^{-5}$	$-2.75737 \cdot 10^{-8}$	$8.73859 \cdot 10^{-12}$	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.62332	$-5.34925 \cdot 10^{-3}$	$5.86330 \cdot 10^{-5}$	$-2.41021 \cdot 10^{-8}$	$4.20325 \cdot 10^{-12}$	
$i - C_4 H_{10} - C(CH_3)_4$	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.214810	326.577	1.058231	1722.128	-	
	$(\varepsilon_{AB}^{(cn)}(T)/k_B)/K$ -P (T)/cm ³ ·mol ⁻¹	591.276	-0.15547 1.08034 • 10 ⁵	$-8.60230 \cdot 10^{-5}$	$5.63390 \cdot 10^{\circ}$	-	
	n_{AB}/μ Pa·s	1.23062	$1.79468 \cdot 10^{-2}$	$1.36082 \cdot 10^{-5}$	$-1.84922 \cdot 10^{-8}$	$597038 \cdot 10^{-12}$	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.36545	$-2.83760 \cdot 10^{-3}$	$5.20963 \cdot 10^{-5}$	$-2.05956 \cdot 10^{-8}$	$3.66454 \cdot 10^{-12}$	0 % to 6 %
$n-C_5H_{12}-i-C_5H_{12}$	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.334716	352.822	1.594136	1906.243	-	
	$(\varepsilon_{AB}^{(en)}(T)/k_B)/K$	740.929	-0.30929	$-3.76183 \cdot 10^{-3}$	$4.77696 \cdot 10^{-8}$	-	
	$-B_{AB}(I)/cm^{*} \cdot mol^{*}$	290.579	$2.53884 \cdot 10^{-2}$ 1 51099 • 10 ⁻²	$9.02/03 \cdot 10^{-5}$ 1 78191 • 10 ⁻⁵	$4.54044 \cdot 10^{-8}$ -1.952059 • 10 ⁻⁸	$550512 \cdot 10^{-12}$	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.42881	$-3.11967 \cdot 10^{-3}$	$4.53935 \cdot 10^{-5}$	$-1.43209 \cdot 10^{-8}$	$1.24297 \cdot 10^{-12}$	
<i>n</i> -C ₅ H ₁₂ -C(CH ₃) ₄	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/{\rm m}$	0.242333	362.270	1.161240	1869.398	-	
	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K_B$	700.157	-0.19589	$-7.71905 \cdot 10^{-5}$	$5.18909 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^{-1} \cdot mol^{-1}$	275.503	$2.356/2 \cdot 10^{-3}$ 1 77557 • 10^{-2}	$-1.39337 \cdot 10^{\circ}$ 1 00006 • 10 ⁻⁵	$5.84120 \cdot 10^{2}$ -1.26005 · 10 ⁻⁸	350608 · 10 ⁻¹²	
	$10^{6}D/m^{2} \cdot s^{-1}$	0.27178	$-1.66062 \cdot 10^{-3}$	$4.19176 \cdot 10^{-5}$	$-1.33039 \cdot 10^{-8}$	$1.50474 \cdot 10^{-12}$	
<i>i</i> -C ₅ H ₁₂ -C(CH ₃) ₄	$10^{10} R_{\rm mAB}^{\rm (eff)}(T)/m$	0.266823	392.880	1.1795768	1965.961	-	
5 12 \ 3/4	$(\varepsilon_{AB}^{(eff)}(T)/k_B)/K$	666.093	-0.20632	$-3.85382 \cdot 10^{-5}$	$3.32327 \cdot 10^{-8}$	-	
	$-B_{AB}(T)/cm^3 \cdot mol^{-1}$	270.149	$2.31530 \cdot 10^{5}$	$-8.25448 \cdot 10^{5}$	$3.80168 \cdot 10^9$	51.81179	
	$\eta_{AB}/\mu ra \cdot s$ 10 ⁶ D/m ² · s ⁻¹	0.29633	$-2.01732 \cdot 10^{-3}$	$4.34193 \cdot 10^{-5}$	$-1.36230 \cdot 10^{-8}$ $-1.41113 \cdot 10^{-8}$	$4.09451 \cdot 10^{-12}$ $1.68355 \cdot 10^{-12}$	
	· _ · · · · ·						

1236 Journal of Chemical & Engineering Data, Vol. 53, No. 6, 2008

Table 6.	Set of Available Experimental Data for	Thermophysical Properties of Mixtures ^a

mixture	reference	property	Ν	ΔT (K)
$CH_4 - C_2H_6$	Michels and Nederbragt ³⁰ (1939)	B_{AB}	3	273 to 323
	21	$B_{\rm mix}$	12	273 to 323
	Mason and Eakin ³¹ (1961)	B_{AB}	1	289
	Hoover et al. ³² (1968)	B_{AB}	3	215 to 273
	Dantzler et al. ³³ (1968)	B_{AB}	4	298 to 373
	Wormald et al. ³⁴ (1979)	B _{AB}	8	241 to 303
	Katayama et al. ³⁵ (1980)	BAR	1	298
	Jaeschke et al. ³⁶ (1988)	BAD	4	273 to 333
	Estrada-Alexanders and Trusler ³⁷ (1994)		8	200 to 375
	Trusler ³⁸ (1994)	B AB	0	200 to 375
	McElrov and Eang^{39} (1004)	B AB	5	200 to 373
	MCENOy and Pang (1994)		12	303 10 343
	P1 + 1 + 1 + 1 + 40 + (1005)	D _{mix}	15	303 10 343
	Blanke and weiss (1995)	B _{AB}	1	273 10 333
	Hou et al. (1996)	B _{AB}	2	300 to 320
		$B_{\rm mix}$	6	300 to 320
	Trautz and Sorg ⁴² (1931)	$\eta_{ m mix}$	20	293 to 523
	Abe et al. ⁴³ (1978)	$\eta_{ m AB}$	5	298 to 468
		$\eta_{ m mix}$	15	298 to 468
		D_{AB}	5	298 to 468
	Trautz and Müller ⁴⁴ (1935)	D_{AB}	5	273 to 523
	Weissman ⁴⁵ (1964)		4	293 to 523
	$Gover^{46}$ (1967)		1	298
	Gotoh et al $\frac{47}{1974}$		3	208 to 138
	$\Delta rora et al 48 (1090)$		b	275 10 430
	$Truslar at al \frac{49}{1006}$		7	215 10 525
$-H_4 - C_3 H_8$	$\frac{11}{34} (1996)$	B _{AB}	/	225 10 375
	Wormald et al. ³⁷ (1979)	B_{AB}	10	243 to 302
	Jaeschke et al. ³⁰ (1988)	B_{AB}	4	273 to 333
	Mason and Eakin ³¹ (1961)	B_{AB}	1	289
	Dantzler et al. ³³ (1968)	B_{AB}	4	298 to 373
	Barker and Linton ⁵⁰ (1963)	$B_{\rm mix}$	5	378 to 511
	Trautz and $Sorg^{42}$ (1931)	$\eta_{\rm mix}$	12	293 to 523
	Bicher and Kat z^{51} (1943)	n	20	298 to 498
	Giddings et al 52 (1966)	n .	8	311 to 411
	Abe et al 43 (1978)	n mix	15	298 to 468
	Abe et al. (1976)	17 mix	5	208 to 468
		η _{AB} D	5	290 10 400
	W.: 45 (10(4)		5	298 10 408
	Weissman ^{(1964)}	D_{AB}	4	293 to 523
	Trautz and Müller ⁴⁴ (1935)	D_{AB}	5	273 to 523
	Gotoh et al. ⁴⁷ (1974)	D_{AB}	4	298 to 438
	Arora et al. ⁴⁸ (1980)	D_{AB}	b	275 to 323
$CH_4 - n - C_4 H_{10}$	Wormald et al. ³⁴ (1979)	B_{AB}	10	277 to 394
	Jaeschke et al. ³⁶ (1988)	BAB	4	273 to 333
	Mason and Eakin ³¹ (1961)	BAR	1	289
	Dantzler et al. ³³ (1968)	BAR	4	298 to 373
	Beattie and Stockmaver ⁵³ (1942)	B.D.	7	423 to 573
	Pompe and Spurling ⁵⁴ (1976)	B AB	10	3/18 to 573
	Kastin and Vata ⁵⁵ (1068)	D _{AB}	0	203 to 203
	Kestill and Fata (1908)	$\eta_{\rm mix}$	0	295 10 505
	143 (1070)	D_{AB}	2	293 to 303
	Abe et al. $(19/8)$	$\eta_{ m mix}$	15	298 to 468
		$\eta_{ m AB}$	5	298 to 468
		D_{AB}	5	298 to 468
	Gotoh et al. ⁴⁷ (1974)	D_{AB}	3	298 to 436
	Arora et al. ⁴⁸ (1980)	D_{AB}	b	275 to 323
$CH_4 - i - C_4 H_{10}$	Mason and Eakin ³¹ (1961)	BAB	1	289
4 4-10	Gotoh et al. 47 (1974)		3	298 to 438
H_{-n-C} H	Mason and Fakin ³¹ (1961)	R AB	1	220 10 450
<i>n c</i> ₅ <i>n</i> ₁₂	Person and Windsor ⁵⁶ (1068)	B AB	2	209 208 to 322
	Dentzlar at al $\frac{33}{1069}$	D _{AB}	∠ ∧	270 10 323
	Damzier et al. (1900) Massaudi and King ⁵⁷ (1072)	D _{AB}	4	290 10 3/3
	Massoudi and King ²⁺ $(19/3)$	B _{AB}	1	298
	Wormald et al. $(19/9)$	B _{AB}	9	319 to 404
	Jaeschke et al. ³⁰ (1988)	B_{AB}	4	273 to 333
$CH_4 - i - C_5 H_{12}$	Mason and Eakin ³¹ (1961)	B_{AB}	1	289
	Pecsok and Windsor ⁵⁶ (1968)	B_{AB}	2	298 to 323
$CH_4 - C(CH_3)_4$	Hamann et al. ⁵⁸ (1955)	BAB	8	303 to 403
	. /	B	32	303 to 403
	Strein et al. ⁵⁹ (1971)	Bin	11	296 to 493
	Bellm et al 60 (1974)	R AB	10	300 to 550
	Definite al. $(17/4)$ Boughmon et el ⁶¹ (1075)		10	200 10 220
	Baugnman et al. $(19/5)$	B _{AB}	/	200 to 258
a	Gotoh et al. $(19/4)$	D _{AB}	3	298 to 436
$C_2H_6-C_3H_8$	Mason and Eakin ³¹ (1961)	B_{AB}	1	289
	Dantzler et al. ³³ (1968)	B_{AB}	4	298 to 373
	Fontalba et al. ⁶² (1988)	BAB	18	274 to 356
	Jaeschke et al. ³⁶ (1988)	BAR	4	273 to 333
	Abe et al. 43 (1978)	η_{\dots}	17	298 to 468
		η_{-}	5	298 to 468
		//AB	5	200 10 400
		ν_{AB}	5	290 10 408

$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	mixture	reference	property	Ν	ΔT (K)
$ \begin{array}{c} \mbox{Tratiz} and Müller44 (1935) & D_{AB} & 5 & 273 \mbox{ to } 523 \\ Weissman45 (1954) & D_{AB} & 4 & 293 \mbox{ to } 523 \\ Gotoh et al.^{47} (1974) & D_{AB} & 1 & 298 \\ Gover^{45} (1967) & D_{AB} & 1 & 298 \\ Mason and Eakin11 (1961) & B_{AB} & 1 & 299 \\ Dantzler et al.^{33} (1968) & B_{AB} & 4 & 298 \mbox{ to } 373 \\ Wormald et al.^{47} (1979) & B_{AB} & 3 & 305 \mbox{ to } 363 \\ Mormald et al.^{47} (1978) & B_{AB} & 4 & 273 \mbox{ to } 333 \\ Abe et al.^{49} (1978) & B_{AB} & 4 & 273 \mbox{ to } 363 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 5 & 298 \mbox{ to } 468 \\ T_{AB} & 7 & 3 & 298 \mbox{ to } 437 \\ T_{2}H_{6} - i C_{4}H_{10} & Gotoh \mbox{ to } al.^{47} (1974) & D_{AB} & 3 & 277 \mbox{ to } 313 \\ T_{2}H_{6} - n C_{3}H_{12} & Dantzler \mbox{ to } al.^{47} (1974) & D_{AB} & 1 & 298 \\ Jaeschke \mbox{ to } al.^{50} (1968) & B_{AB} & 1 & 298 \\ Jaeschke \mbox{ to } al.^{50} (1973) & B_{AB} & 1 & 298 \\ Jaeschke \mbox{ to } al.^{50} (1974) & D_{AB} & 3 & 277 \mbox{ to } 313 \\ Jaeschke \mbox{ to } al.^{50} (1974) & D_{AB} & 4 & 273 \mbox{ to } 313 \\ Jaeschke \mbox{ to } al.^{50} (1974) & D_{AB} & 4 & 273 \mbox{ to } 313 \\ Jaeschke \mbox{ to } al.^{50} (1974) & D_{AB} & 4 & 298 \mbox{ to } 373 \\ Jaeschke \mbox{ to } al.^{50} (1974) & D_{AB} & 3 & 298 \mbox{ to } 437 \\ C_{3}H_{6} - n C_{4}H_{10} & Gotoh \mbox{ to } al.^{50} (1974) & D_{AB} & 3 & 298 \mbox{ to } 437 \\ C_{3}H_{6} - n C_{4}H_{10} & Gotoh \mbox{ to } al.^{50} (1974) & D_{AB} & 3 & 298 \mbox{ to } 437 \\ C_{3}H_{6} - n C_{4}H_{10} & Gotoh \mbox{ to } al.^{50} (1974) & D_{AB} & 3 & 298 \mbox{ to } 437 \\ C_{4}H_{6} - n C_{4}$		Trautz and Sorg ⁴² (1931)	$\eta_{ m mix}$	12	313 to 373
$ \begin{array}{c} \mbox{Weissmans}^{2} (1964) & D_{AB} & 4 & 293 to 523 \\ \mbox{Gotoh et al.}^{4.7} (1974) & D_{AB} & 3 & 298 to 438 \\ \mbox{Gover}^{4.8} (1967) & D_{AB} & 1 & 298 \\ \mbox{Basen and Eakin}^{31} (1968) & B_{AB} & 4 & 298 to 373 \\ \mbox{Dantzler et al.}^{33} (1968) & B_{AB} & 4 & 298 to 373 \\ \mbox{Dantzler et al.}^{33} (1968) & B_{AB} & 4 & 298 to 373 \\ \mbox{Dantzler et al.}^{4.7} (1974) & D_{AB} & 3 & 305 to 363 \\ \mbox{Dantzler et al.}^{4.7} (1974) & D_{AB} & 5 & 298 to 468 \\ \mbox{Dant} & D_{AB} & 5 & 298 to 468 \\ \mbox{Dant} & D_{AB} & 5 & 298 to 468 \\ \mbox{Dant} & D_{AB} & 5 & 298 to 468 \\ \mbox{Dank} & 5 & 298 to 437 \\ \mbox{C}_{2}H_{6}-i\cdotC_{4}H_{10} & \mbox{Gotoh et al.}^{4.7} (1974) & D_{AB} & 3 & 298 to 437 \\ \mbox{C}_{2}H_{6}-n\cdotC_{3}H_{12} & \mbox{Dantzler et al.}^{33} (1968) & B_{AB} & 4 & 298 to 373 \\ \mbox{Dantzler et al.}^{4.7} (1974) & D_{AB} & 3 & 298 to 437 \\ \mbox{C}_{2}H_{6}-n\cdotC_{3}H_{12} & \mbox{Dantzler et al.}^{33} (1968) & B_{AB} & 1 & 298 \\ \mbox{Dantzler et al.}^{4.7} (1974) & D_{AB} & 3 & 298 to 437 \\ \mbox{C}_{3}H_{6}-n\cdotC_{4}H_{10} & \mbox{Massondi and King}^{7} (1973) & B_{AB} & 1 & 298 \\ \mbox{Dantzler et al.}^{4.7} (1974) & D_{AB} & 3 & 298 to 437 \\ \mbox{C}_{3}H_{6}-n\cdotC_{4}H_{10} & \mbox{Massondi Eakin}^{4.7} (1974) & D_{AB} & 3 & 298 to 437 \\ \mbox{C}_{3}H_{6}-n\cdotC_{4}H_{10} & \mbox{Massondi et al.}^{4.7} (1974) & D_{AB} & 4 & 298 to 373 \\ \mbox{Dantzler et al.}^{4.3} (1978) & \mbox{Dant} & 4 & 298 to 373 \\ \mbox{Dantzler et al.}^{4.3} (1974) & D_{AB} & 3 & 298 to 468 \\ \mbox{Dant} & D_{AB} & 1 & 298 \\ \mbox{C}_{3}H_{8}-i\cdotC_{4}H_{10} & \mbox{Mich} & 14 & 298 to 626 \\ \mbox{Dant} & 14 & 298 to 626 \\ \mbox{Dant} & 17 & 298 to 626 \\ \mbox{Dank} & 17 & 298 to 637 \\ \mbox{Dank} & 14 & 298 to 637 \\ \mbox{Dank} & 17 & 298 to 637 \\ \mbox{Dank} & 17 & 298 to 637 \\ \mbox{Dank} & 17 & 298 to 637 \\ \mbox{Dank} & 12 & 298 to 373 \\ \mbox{Dank} & 14 & 298 to 637 \\ \mbox{Dank} & 5 & 298 to 373 \\$		Trautz and Müller ⁴⁴ (1935)	D_{AB}	5	273 to 523
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Weissman ⁴⁵ (1964)	D_{AB}	4	293 to 523
$\begin{array}{cccc} Goverf*(1967) & D_{AB} & 1 & 298 \\ G_{2}H_{6}-n\cdot C_{4}H_{10} & Mason and Eakn^{13}(1961) & B_{AB} & 1 & 289 \\ Dantzler et al.^{35}(1968) & B_{AB} & 4 & 298 to 373 \\ Wormald et al.^{44}(1979) & B_{AB} & 3 & 305 to 363 \\ Jacschke et al.^{56}(1988) & B_{AB} & 4 & 273 to 333 \\ Abe et al.^{45}(1978) & \eta_{mix} & 15 & 298 to 468 \\ D_{AB} & 5 & 298 to 477 \\ C_{2}H_{6}-n\cdot C_{3}H_{12} & Dantzler et al.^{33}(1968) & B_{AB} & 4 & 298 to 373 \\ Pecsok and Windsor^{60}(1968) & B_{AB} & 1 & 298 \\ Jacschke et al.^{47}(1974) & D_{AB} & 3 & 298 to 437 \\ C_{2}H_{6}-n\cdot C_{3}H_{12} & Gotoh et al.^{47}(1974) & D_{AB} & 3 & 298 to 437 \\ C_{3}H_{6}-n\cdot C_{4}H_{10} & Masond and Eakn^{33}(1968) & B_{AB} & 4 & 298 to 373 \\ Jacschke et al.^{56}(1988) & B_{AB} & 1 & 298 \\ Jacschke et al.^{56}(1988) & B_{AB} & 1 & 298 \\ Jacschke et al.^{56}(1988) & B_{AB} & 1 & 298 \\ Jacschke et al.^{56}(1988) & B_{AB} & 4 & 298 to 373 \\ Jacschke et al.^{51}(1973) & B_{AB} & 1 & 298 \\ Jacschke et al.^{51}(1974) & D_{AB} & 3 & 298 to 437 \\ C_{3}H_{8}-n\cdot C_{4}H_{10} & Mason and Eakn^{51}(1968) & B_{AB} & 4 & 298 to 373 \\ Jacschke et al.^{51}(1978) & \eta_{mix} & 19 & 298 to 468 \\ D_{AB} & 2 & 298 to 437 \\ C_{5}H_{8}-i\cdot C_{4}H_{10} & Gotoh et al.^{47}(1974) & D_{AB} & 3 & 298 to 437 \\ C_{3}H_{8}-n\cdot C_{3}H_{12} & Dantzler et al.^{53}(1968) & B_{AB} & 4 & 298 to 373 \\ Jacschke et al.^{51}(1974) & D_{AB} & 3 & 298 to 437 \\ C_{3}H_{8}-n\cdot C_{3}H_{12} & Dantzler et al.^{53}(1968) & B_{AB} & 4 & 298 to 373 \\ Pecsok and La^{47}(1974) & D_{AB} & 3 & 298 to 438 \\ n\cdot C_{4}H_{8}-n\cdot C_{3}H_{12} & Dantzler et al.^{53}(1968) & B_{AB} & 4 & 298 to 373 \\ Pecsok and A_{10} & Pecsok & Pecsok & 144 & 298 to 626 \\ Pab A_{10} & Pab A_{10} & Pab A_{10} & Pab A_{20} & Pab A_{20} & PaB A_{20} \\ Pab A_{10} & PaB & 3 & 298 to $		Gotoh et al. 47 (1974)	D_{AB}	3	298 to 438
$\begin{array}{cccc} C_{2}H_{6} = n-C_{4}H_{10} & Mason and Eakin31 (1961) & B_{AB} & 1 & 289 \\ Mason and Eakin31 (1963) & B_{AB} & 4 & 298 to 373 \\ Wormald et al. 34 (1979) & B_{AB} & 3 & 305 to 363 \\ Jaeschke et al. 35 (1988) & B_{AB} & 4 & 273 to 333 \\ Jaeschke et al. 36 (1988) & B_{AB} & 4 & 273 to 333 \\ \eta_{AB} & 5 & 298 to 468 \\ \eta_{AB} & 5 & 298 to 468 \\ \eta_{AB} & 5 & 298 to 468 \\ 0 AB & 5 & 298 to 468 \\ 0 AB & 5 & 298 to 468 \\ 0 AB & 5 & 298 to 477 \\ C_{2}H_{6} = n-C_{4}H_{10} & Goto et al. 47 (1974) & D_{AB} & 3 & 298 to 437 \\ C_{2}H_{6} = n-C_{3}H_{12} & Dantzler et al. ^{33} (1968) & B_{AB} & 4 & 298 to 373 \\ Pecsok and Windsor56 (1968) & B_{AB} & 1 & 298 \\ Massoudi and King57 (1973) & B_{AB} & 1 & 298 \\ Jaeschke et al. ^{36} (1988) & B_{AB} & 1 & 298 \\ Jaeschke et al. ^{47} (1974) & D_{AB} & 3 & 298 to 437 \\ C_{3}H_{8} = n-C_{4}H_{10} & Mason and Eakin31 (1961) & B_{AB} & 1 & 289 \\ Dantzler et al. ^{33} (1968) & B_{AB} & 1 & 298 \\ Jaeschke et al. ^{47} (1974) & D_{AB} & 3 & 298 to 437 \\ C_{3}H_{8} = n-C_{4}H_{10} & Mason and Eakin31 (1961) & B_{AB} & 1 & 298 \\ Dantzler et al. ^{33} (1968) & B_{AB} & 4 & 298 to 373 \\ Jaeschke et al. ^{47} (1974) & D_{AB} & 5 & 298 to 468 \\ Dantzler et al. ^{34} (1978) & \eta_{mix} & 19 & 298 to 468 \\ Dantzler et al. ^{47} (1974) & D_{AB} & 5 & 298 to 468 \\ C_{3}H_{8} = n-C_{4}H_{10} & Küchenmeister et al. ^{63} (2001) & \eta_{mix} & 14 & 298 to 626 \\ \eta_{AB} & 17 & 298 to 637 \\ \eta_{AB} & 5 & 298 to 373 \\ \eta_{AB} & 5 & 2$		Gover ⁴⁸ (1967)	D_{AB}	1	298
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_2H_6 - n - C_4H_{10}$	Mason and Eakin ³¹ (1961)	B_{AB}	1	289
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dantzler et al. ³³ (1968)	B_{AB}	4	298 to 373
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Wormald et al. ³⁴ (1979)	B_{AB}	3	305 to 363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Jaeschke et al. ³⁶ (1988)	B_{AB}	4	273 to 333
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Abe et al. ⁴³ (1978)	$\eta_{ m mix}$	15	298 to 468
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\eta_{ m AB}$	5	298 to 468
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			D_{AB}	5	298 to 468
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Gotoh et al. ⁴⁷ (1974)	D_{AB}	3	298 to 437
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2H_6 - i - C_4H_{10}$	Gotoh et al. ⁴⁷ (1974)	D_{AB}	3	298 to 437
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C H = \pi C H$	Deptzler et el 33 (1068)	D	4	208 to 272
$ \begin{array}{c ccccc} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$C_2 n_6 - n - C_5 n_{12}$	Dalitzlei et al. (1908) Deceek and Windcor ⁵⁶ (1068)		4	298 10 373
$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		Messendi and King ⁵⁷ (1072)		1	298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Massouul and King (1975)		1	290
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Jaeschke et al. (1988)	D_{AB}	3	275 10 515
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{2}H_{6}-C(CH_{3})_{4}$	Gotoh et al.47 (1974)	D_{AB}	3	298 to 437
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{3}H_{8}-n-C_{4}H_{10}$	Mason and Eakin ³¹ (1961)	B_{AB}	1	289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Dantzler et al. ³³ (1968)	B_{AB}	4	298 to 373
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Jaeschke et al. ³⁶ (1988)	B_{AB}	4	273 to 333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Abe et al. ⁴³ (1978)	$\eta_{ m mix}$	19	298 to 468
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			D_{AB}	5	298 to 468
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Gotoh et al.47 (1974)	D_{AB}	2	298 to 437
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{3}H_{8}-i-C_{4}H_{10}$	Küchenmeister et al. ⁶³ (2001)	$\eta_{ m mix}$	14	298 to 626
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			η_{AB}	14	298 to 626
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			D_{AB}	17	298 to 626
$ \begin{array}{cccc} C_{3}H_{8}-n-C_{5}H_{12} & \text{Dantzler et al.}^{33} (1968) & B_{AB} & 4 & 298 \text{ to } 373 \\ \hline C_{3}H_{8}-C(CH_{3})_{4} & \text{Gotoh et al.}^{47} (1974) & D_{AB} & 3 & 298 \text{ to } 438 \\ \hline n-C_{4}H_{10}-i-C_{4}H_{10} & Connolly^{64} (1962) & B_{AB} & 7 & 344 \text{ to } 444 \\ Abe \text{ et al.}^{65} (1979) & \eta_{mix} & 20 & 298 \text{ to } 373 \\ \hline \eta_{AB} & 5 & 298 \text{ to } 373 \\ \hline D_{AB} & 5 & 298 \text{ to } 373 \\ \hline D_{AB} & 5 & 298 \text{ to } 373 \\ \hline D_{AB} & 5 & 298 \text{ to } 373 \\ \hline n-C_{4}H_{10}-n-C_{5}H_{12} & \text{Dantzler et al.}^{33} (1968) & B_{AB} & 4 & 298 \text{ to } 373 \\ \hline n-C_{4}H_{10}-C(CH_{3})_{4} & \text{Gotoh et al.}^{47} (1974) & D_{AB} & 3 & 298 \text{ to } 438 \\ \hline i-C_{4}H_{10}-C(CH_{3})_{4} & \text{Gotoh et al.}^{47} (1974) & D_{AB} & 3 & 298 \text{ to } 438 \\ \hline \end{array} $		Gotoh et al.47 (1974)	D_{AB}	3	298 to 437
$ \begin{array}{cccc} C_{3}H_{8}-C(CH_{3})_{4} & & & & & & & & & & & & & & & & & & &$	$C_{3}H_{8}$ - <i>n</i> - $C_{5}H_{12}$	Dantzler et al. ³³ (1968)	B _{AB}	4	298 to 373
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{2}H_{2}-C(CH_{2})$	Gotoh et al 47 (1974)	D	3	298 to 438
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03118 0(0113)4		DAB	5	290 10 100
Abe et al.65 (1979) η_{mix} 20298 to 373 η_{AB} 5298 to 373 η_{AB} 5298 to 373 D_{AB} 5298 to 373 $n-C_4H_{10}-n-C_5H_{12}$ Dantzler et al.33 (1968) B_{AB} 4 $n-C_4H_{10}-C(CH_3)_4$ Gotoh et al.47 (1974) D_{AB} 3 $i-C_4H_{10}-C(CH_3)_4$ Gotoh et al.47 (1974) D_{AB} 3 298 to 438 $i-C_4H_{10}-C(CH_3)_4$ Gotoh et al.47 (1974) D_{AB} 3	$n-C_4H_{10}-i-C_4H_{10}$	$Connolly^{64}$ (1962)	B_{AB}	7	344 to 444
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$		Abe et al. ⁶⁵ (1979)	$\eta_{ m mix}$	20	298 to 373
$\begin{array}{ccccccc} D_{AB} & 5 & 298 \text{ to } 373 \\ n-C_4H_{10}-n-C_5H_{12} & Dantzler et al.^{33} (1968) & B_{AB} & 4 & 298 \text{ to } 373 \\ n-C_4H_{10}-C(CH_3)_4 & Gotoh et al.^{47} (1974) & D_{AB} & 3 & 298 \text{ to } 438 \\ i-C_4H_{10}-C(CH_3)_4 & Gotoh et al.^{47} (1974) & D_{AB} & 3 & 298 \text{ to } 438 \end{array}$			$\eta_{ m AB}$	5	298 to 373
$n-C_4H_{10}-n-C_5H_{12}$ Dantzler et al. 33 (1968) B_{AB} 4298 to 373 $n-C_4H_{10}-C(CH_3)_4$ Gotoh et al. 47 (1974) D_{AB} 3298 to 438 $i-C_4H_{10}-C(CH_3)_4$ Gotoh et al. 47 (1974) D_{AB} 3298 to 438			D_{AB}	5	298 to 373
$n-C_4H_{10}-C(CH_3)_4$ Gotoh et al. 47 (1974) D_{AB} 3298 to 438 $i-C_4H_{10}-C(CH_3)_4$ Gotoh et al. 47 (1974) D_{AB} 3298 to 438	$n-C_4H_{10}-n-C_5H_{12}$	Dantzler et al. ³³ (1968)	B_{AB}	4	298 to 373
$i - C_4 H_{10} - C(CH_3)_4$ Gotoh et al. ⁴⁷ (1974) D_{AB} 3 298 to 438	$n-C_4H_{10}-C(CH_3)_4$	Gotoh et al. ⁴⁷ (1974)	D_{AB}	3	298 to 438
	$i-C_4H_{10}-C(CH_3)_4$	Gotoh et al. ⁴⁷ (1974)	D_{AB}	3	298 to 438

^{*a*} N is the number of experimental data points measured in the temperature range ΔT . ^{*b*} The authors have measured binary diffusion coefficients over the temperature range (275 to 323) K at constant mole fraction and then fitted them to polynomials.

Table 6. Continued

Figure 1. Deviations $B_{\text{mix}}^{\text{expll}} - B_{\text{mix}}^{\text{calcd}}$ between experimental and calculated second *pVT* mixture virial coefficients of $\text{CH}_4-\text{C}_2\text{H}_6$ mixtures of different compositions: \bigcirc , McElroy and Fang;³⁹ , Michels and Nederbragt;³⁰ open triangle pointing right, Hou et al.⁴¹

calculations of up to 30 %. We expect this deviation to be larger than their experimental error bars, which, however, are not given in their publication.⁴⁴ Gotoh et al.⁴⁷ have examined 14 mixtures relevant to us and presented the most comprehensive experimental study on the binary diffusion coefficients of small alkanes. They state a probable accuracy of 1 %. Their data coincide with our results to within -3 % - +10 %, except for

Figure 2. Deviations $B_{\text{mix}}^{\text{exptl}} - B_{\text{mix}}^{\text{calcd}}$ between experimental and calculated second *pVT* mixture virial coefficients: \bullet , Hamann et al.,⁵⁸ CH₄-C(CH₃)₄ mixtures of different compositions; \bigcirc , Barker and Linton,⁵⁰ equimolar CH₄-C₃H₈ mixture.

 $n-C_4H_{10}-C(CH_3)_4$ where a difference of up to 20 % is observed. The same high accuracy of 1 % was also stated by Gover.⁴⁶ His results of D_{AB} for mixtures of C_2H_6 with CH_4 and C_3H_8 do not deviate by more than 2 % from our calculations. In view of the experimentally obtained diffusion coefficients D_{AB} , our calculations are well within a range of -5 % and +10 % of the majority of the data. The agreement becomes much better if

Figure 3. Relative deviations $100 \cdot (\eta_{AB}^{expl} - \eta_{AB}^{caled})/\eta_{AB}^{caled}$ between experimental and calculated interaction viscosities: \bullet , CH₄-C₂H₆: \blacksquare , CH₄-C₃H₈; \circ , CH₄-C₂H₆: \blacksquare , CH₄-C₃H₈; \circ , C₃H₈-*n*-C₄H₁₀; \blacklozenge , *i*-C₄H₁₀-*n*-C₄H₁₀ (all Abe et al.⁴³); \bigtriangledown , C₂H₆-*n*-C₄H₁₀ (Abe et al.⁶⁵); \square , CH₄-*n*-C₄H₁₀ (Kestin and Yata⁵⁵); \times , C₃H₈-*i*-C₄H₁₀ (Küchenmeister et al.⁶³).

Figure 4. Relative deviations $100 \cdot (D_{AB}^{cabd} - D_{AB}^{cabd})/D_{AB}^{calcd}$ between experimental⁴⁷ and calculated binary diffusion coefficients: ×, $CH_4 - i \cdot C_4 H_{10}$; \blacktriangle , $CH_4 - C(CH_3)_4$; \triangle , $C_2H_6 - i \cdot C_4 H_{10}$; \blacksquare , $C_2H_6 - C(CH_3)_4$; \square , $C_3H_8 - C(CH_3)_4$; \bigcirc , $n \cdot C_4 H_{10} - C(CH_3)_4$; \bigcirc , $i \cdot C_4 H_{10} - C(CH_3)_4$.

Figure 5. Relative deviations $100 \cdot (D_{AB}^{expl} - D_{AB}^{ealcd})/D_{AB}^{ealcd}$ between experimental and calculated binary diffusion coefficients of $C_3H_8-i-C_4H_{10}$ mixtures: \bullet , Küchenmeister et al.;⁶³ \bigcirc , Gotoh et al.⁴⁷

we compare our results with diffusion coefficients D_{AB} recalculated from measured interaction viscosities η_{AB} according to eq 13. Abe et al.⁴³ have explored six mixtures and recalculated D_{AB} from their measured η_{AB} . Their results are in very good agreement with our calculations. The deviations range from \pm 0.5 % for CH₄-C₂H₆ and C₂H₆-*n*-C₄H₁₀ up to a maximum value of 4 % for C₃H₈-*n*-C₄H₁₀. In a later work on *n*-C₄H₁₀-*i*-C₄H₁₀, the results of Abe et al.⁶⁵ deviate by 90 % from our calculations, although the underlying η_{AB} (Figure 3) and η_{mix} coincide with our calculated viscosities to within \pm 1.5 %. We assume an erroneous calculation of D_{AB} by Abe et al.⁶⁵ Weissman⁴⁵ has used η_{mix} measured by Trautz and Sorg⁴² to obtain D_{AB} for CH₄-C₂H₆, CH₄-C₃H₈, and C₂H₆-C₃H₈. For the latter two mixtures, his results deviate by no more than 5 % from our findings, where for the first mixture deviations between 3 % and 8 % are observed. A recent experimental work of Vogel and coworkers⁶³ presents 14 viscosities η_{mix} of the equimolar binary mixture C₃H₈-*i*-C₄H₁₀ measured in the range between (298 and 627) K with an unsurpassed uncertainty not higher than 0.3 %. Using these data, the authors obtained the interaction viscosity coefficients η_{AB} and the binary diffusion coefficients D_{AB} with only slightly higher uncertainty. As can be seen in Figure 5, their diffusion coefficients do agree fairly well with our calculations, and the underlying viscosities do not deviate by more than 1 % from our data presented in this work.

For those mixtures where comparison of our calculated thermophysical data to experiments is possible, we try to extract a range of confidence of our fitting formulas. Their expected accuracy is given in the last column of Tables 4 and 5. However, it is very hard to predict reliable error bounds for the missing entries. Based on our knowledge with the LJTDP, a conservative estimate of the accuracies of B_{AB} , η_{AB} , and D_{AB} is (20 to 30) cm³·mol⁻¹, ± 2 %, and ± 7.5 %, respectively. It seems that especially B_{mix} could be obtained with a slightly better accuracy of (10 to 20) cm³·mol⁻¹.

Conclusions

The isotropic (n-6) Lennard-Jones temperature-dependent potential (LJTDP) is used to calculate second interaction virial coefficients B_{AB} and interaction viscosities η_{AB} , second mixture virial coefficients $B_{\rm mix}$ and mixture viscosities $\eta_{\rm mix}$, and binary diffusion coefficients D_{AB} of all 28 binary mixtures of the alkanes CH₄, C₂H₆, C₃H₈, n-C₄H₁₀, i-C₄H₁₀, n-C₅H₁₂, i-C₅H₁₂, and $C(CH_3)_4$ in the temperature range between (180 and 1200) K. The potential parameters $\varepsilon_{AB}^{(eff)}(T)$, $R_{mAB}^{(eff)}(T)$, and n_{AB} of the unlike interaction between two alkanes A and B are obtained from the corresponding parameters $\varepsilon_{AA}^{(eff)}(T)$, $R_{mAA}^{(eff)}(T)$, and n_{AA} of the pure alkanes via the Hohm-Zarkova-Damyanova (HZD) mixing rules. Our approach is checked against the limited number of experimentally obtained thermophysical properties of the binary mixtures $CH_4 - C_2H_6$ (B_{AB} , B_{mix} , η_{mix} , η_{AB} , D_{AB}), $CH_4 - C_3H_8 (B_{AB}, B_{mix}, \eta_{mix}, \eta_{AB}, D_{AB}), CH_4 - n - C_4H_{10} (B_{AB}, \eta_{AB}, \eta_{AB})$ $\eta_{\text{mix}}, \eta_{\text{AB}}, D_{\text{AB}}$), CH₄-*i*-C₄H₁₀ (B_{AB}, D_{AB}), CH₄-*n*-C₅H₁₂ $(B_{AB}), CH_4 - i - C_5 H_{12} (B_{AB}), CH_4 - C(CH_3)_4 (B_{AB}, B_{mix}, D_{AB}),$ $C_2H_6-C_3H_8$ (B_{AB} , η_{mix} , η_{AB} , D_{AB}), $C_2H_6-n-C_4H_{10}$ (B_{AB} , η_{mix} , $\eta_{\rm AB}, \ D_{\rm AB}), \ {\rm C}_2{\rm H}_6 - i {\rm - C}_4{\rm H}_{10} \ (D_{\rm AB}), \ {\rm C}_2{\rm H}_6 - n {\rm - C}_5{\rm H}_{12} \ (B_{\rm AB}),$ $C_2H_6-C(CH_3)_4$ (D_{AB}), $C_3H_8-n-C_4H_{10}$ (B_{AB} , η_{mix} , D_{AB}), $C_3H_8-i-i C_4H_{10}(\eta_{mix}, \eta_{AB}, D_{AB}), C_3H_8 - n - C_5H_{12}(B_{AB}), C_3H_8 - C(CH_3)_4,$ $(D_{AB}), n-C_4H_{10}-i-C_4H_{10}$ $(B_{AB}, \eta_{mix}, \eta_{AB}, D_{AB}), n-C_4H_{10}-n-i-C_4H_{10}-n$ C_5H_{12} (B_{AB}), $n-C_4H_{10}-C(CH_3)_4$ (D_{AB}), $i-C_4H_{10}-C(CH_3)_4$ (D_{AB})). In general, we observe a good agreement between our calculations and the directly measurable properties $B_{\rm mix}$ and $\eta_{\rm mix}$. In the case of B_{AB} and η_{AB} , the agreement becomes slightly worse but still acceptable. For the binary diffusion coefficients D_{AB} , our calculations mostly lie outside the error bars of the directly measured properties. Very good agreement, however, is observed if the comparison is made to diffusion coefficients $D_{\rm AB}$ recalculated from measured interaction viscosities $\eta_{\rm AB}$.

To conclude, we must state that there is a strong need for further experimental studies on the thermophysical properties of binary mixtures. Such studies can also help to check and improve our approach of the application of the LJTDP to mixtures.

Having now some confidence in our approach, the tabulated interaction properties of the alkanes under study and their binary mixtures will allow for a better prediction of thermophysical properties of binary and multicomponent vapor mixtures for the needs of the gas and oil industry.

Supporting Information Available:

Tables of recommended thermophysical properties of all 28 mixtures considered as well as deviation plots between experimental and calculated thermophysical properties are given. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- Estela-Uribe, J. F. A Helmholtz energy model for liquefied natural gas systems. *Fluid Phase Equilib.* 2006, 246, 64–70.
- (2) Quiñones-Cisneros, S. E.; Zéberg-Mikkelsen, C. K.; Baylaucq, A.; Boned, C. Viscosity Modeling and Prediction of Reservoir Fluids: From Natural Gas to Heavy Oils. *Int. J. Thermophys.* 2004, 25, 1353– 1366.
- (3) Vesovic, V. Predicting the viscosity of natural gas. Int. J. Thermophys. 2001, 22, 415–426.
- (4) Mota, J. P. B. Impact of gas composition on natural gas storage by adsorption. AIChE J. 1999, 45, 986–996.
- (5) Voulgaris, M. E.; Peters, C. J.; de Swaan Arons, J. Prediction of the Condensation Behavior of Natural Gas: A Comparative Study of the Peng-Robinson and the Simplified-Perturbed-Hard-Chain Theory Equations of State. *Ind. Eng. Chem. Res.* **1998**, *37*, 1696–1706.
- (6) Huang, Q.; Guo, T.-M. Prediction of the critical points of natural gas mixtures by rigorous and semi-empirical methods. *J. Petrol. Sci. Eng.* **1995**, *13*, 233–245.
- (7) Krishna, R.; van Baten, J. M. The Darken Relation for Multicomponent Diffusion in Liquid Mixtures of Linear Alkanes: An Investigation Using Molecular Dynamics (MD) Simulations. *Ind. Eng. Chem. Res.* 2005, 44, 6939–6947.
- (8) Meng, L.; Duan, Y.-Y. Prediction of the second cross virial coefficients of nonpolar binary mixtures. *Fluid Phase Equilib.* 2005, 238, 229– 238.
- (9) Freed, D. E.; Burcaw, L.; Song, Y.-Q. Scaling Laws for Diffusion Coefficients in Mixtures of Alkanes. *Phys. Rev. Lett.* 2005, 94, 0676021–0676024.
- (10) Polishuk, I.; Wisniak, J.; Segura, H. Estimation of Liquid-Liquid-Vapor Equilibria in Binary Mixtures of n-Alkanes. *Ind. Eng. Chem. Res.* 2004, 43, 5957–5964.
- (11) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: London, 1954.
- (12) López-Lemus, J.; Romero-Bastida, M.; Darden, T. A.; Alejandre, J. Liquid-vapour equilibrium of n-alkanes using interface simulations. *Mol. Phys.* **2006**, *104*, 2413–2421.
- (13) McKnight, T. J.; Vlugt, T. J. H.; Ramjugernath, D.; Starzak, M.; Ahlström, P.; Bolton, K. Simulation of 1-alkene and n-alkane binary vapour-liquid equilibrium using different united-atom transferable force fields. *Fluid Phase Equilib.* **2005**, *232*, 136–148.
- (14) Chempath, S.; Krishna, R.; Snurr, R. Q. Nonequilibrium molecular dynamics simulations of diffusion of binary mixtures containing short n-alkanes in faujasite. J. Phys. Chem. B 2004, 108, 13481–13491.
- (15) Zarkova, L.; Hohm, U.; Damyanova, M. Comparison of Lorentz-Berthelot and Tang-Toennies Mixing Rules Using an Isotropic Temperature-Dependent Potential Applied to the Thermophysical Properties of Binary Gas Mixtures of CH₄, CF₄, SF₆, and C(CH₃)₄ with Ar, Kr, and Xe. Int. J. Thermophys. **2004**, 25, 1775–1798.
- (16) Zarkova, L.; Hohm, U.; Damyanova, M. Viscosity and pVT-Second Virial Coefficient of Binary Noble-Globular Gas and Globular-Globular Gas Mixtures Calculated by Means of an Isotropic Temperature-Dependent Potential. J. Phys. Chem. Ref. Data 2003, 32, 1591– 1705.
- (17) Rivera, J. L.; Alejandre, J. Vapor-liquid equilibrium simulations of nitrogen and n-alkane binary mixtures. *Colloid Surf.*, A 2002, 207, 223–228.
- (18) Nath, S. K.; Escobedo, F. A.; de Pablo, J. J.; Patramai, I. Simulation of Vapor-Liquid Equilibria for Alkane Mixtures. *Ind. Eng. Chem. Res.* **1998**, *37*, 3195–3202.
- (19) Smit, B.; Siepmann, J. I. Simulating the adsorption of alkanes in zeolites. *Science* **1994**, *264*, 1118–1120.
- (20) Chang, J.; Sandler, S. I. Interatomic Lennard-Jones potentials of linear and branched alkanes calibrated by Gibbs ensemble simulations for vapor-liquid equilibria. J. Chem. Phys. 2004, 121, 7474–7483.
- (21) Ungerer, P.; Nieto-Draghi, C.; Lachet, V.; Wender, A.; di Lella, A.; Boutin, A.; Rousseau, B.; Fuchs, A. H. Molecular simulation applied to fluid properties in the oil and gas industry. *Mol. Simul.* 2007, *33*, 287–304.

- (22) Mutelet, F.; Nicolas, C.; Rogalski, M. Estimating Phase Equilibria of a van der Waals Fluid on the Basis of Molecular Interactions. *Ind. Eng. Chem. Res.* 2004, 43, 6182–6186.
- (23) Pavlíček, J.; Aim, K.; Boublík, T. Mixtures of n-alkanes from the perturbation theory of anisotropic molecule fluids. *Fluid Phase Equilib.* **1993**, *91*, 203–214.
- (24) Stoker, J. M.; Rowley, R. L. Molecular dynamics simulation of realfluid mutual diffusion coefficients with the Lennard-Jones potential model. J. Chem. Phys. 1989, 91, 3670–3676.
- (25) Hohm, U.; Zarkova, L.; Damyanova, M. Thermophysical properties of low-density pure alkanes and their binary mixtures calculated by an (n-6) Lennard-Jones temperature-dependent potential. *Int. J. Thermophys.* 2006, 27, 1725–1745.
- (26) Tang, K. T.; Toennies, J. P. New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems. *Z. Phys. D* **1986**, *1*, 91–101.
- (27) Zarkova, L.; Hohm, U.; Damyanova, M. Viscosity, Second pVT-Virial Coefficient, and Diffusion of Pure and Mixed Small Alkanes CH₄, C₂H₆, C₃H₈, n-C₄H₁₀, i-C₄H₁₀, n-C₅H₁₂, i-C₅H₁₂, and C(CH₃)₄, Calculated by Means of an Isotropic Temperature-Dependent Potential. I. Pure Alkanes. *J. Phys. Chem. Ref. Data* **2006**, *35*, 1331–1364.
- (28) Hohm, U.; Zarkova, L. Extending the approach of the temperaturedependent potential to the small alkanes CH₄, C₂H₆, C₃H₈, n-C₄H₁₀, i-C₄H₁₀, n-C₅H₁₂, C(CH₃)₄, and chlorine, Cl₂. *Chem. Phys.* **2004**, 298, 195–203.
- (29) Dymond, J. H.; Marsh, K. N.; Wilhoit, R. C.; Landolt-Börnstein Virial Coefficients of Pure Gases and Mixtures - Virial Coefficients of Mixtures, New Series IV/21B; Springer: Berlin, 2003.
- (30) Michels, A.; Nederbragt, G. W. Isotherms of methane-ethane mixts. at 0°, 25° and 50° up to 60 atm. *Physica* **1939**, *6*, 656–662.
- (31) Mason, D. M.; Eakin, B. E. Compressibility factor of fuel gases at 60 °F. and 1 atm. J. Chem. Eng. Data **1961**, *6*, 499–504.
- (32) Hoover, A. E.; Nagata, I.; Leland, T. W.; Kobayashi, R. Virial coefficients of methane, ethane, and their mixtures at low temperatures. *J. Chem. Phys.* **1968**, *48*, 2633–2647.
- (33) Dantzler, E. M.; Knobler, C. M.; Windsor, M. L. Interaction virial coefficients in hydrocarbon mixtures. J. Phys. Chem. 1968, 72, 676– 684.
- (34) Wormald, C. J.; Lewis, E. J.; Hutchings, D. J. Excess enthalpies of gaseous mixtures of n-alkanes. J. Chem. Thermodyn. 1979, 11, 1–12.
- (35) Katayama, T.; Ohgaki, K.; Ohmori, H. Measurement of interaction second virial coefficients with high accuray. J. Chem. Eng. Jpn. 1980, 13, 257–262.
- (36) Jaeschke, M.; Audibert, S.; van Canegham, P.; Humphreys, A. E.; Jensen-van Rosmalen, R.; Pellei, Q.; Michels, J. P. J.; Schouten, J. A. *GERG Tech. Monogr.*, *TM2* **1988**, 163.
- (37) Estrada-Alexanders, A. F.; Trusler, J. P. M. Virial coefficients of ethane and (methane + ethane) determined from the speed of sound. IChemE Res. Event, Vol. 2, Inst. Chem. Eng. (Rugby UK); 1994, 670–672.
- (38) Trusler, J. P. M. The speed of sound in $(0.8CH_4 + 0.2C_2H_6)(g)$ at temperatures between 200 and 375 K and amount-of-substance densities up to 5 mol· dm⁻³. *J. Chem. Thermodyn.* **1994**, 26, 751–763.
- (39) McElroy, P. J.; Fang, J. Compression factors and virial coefficients of (methane + ethane). J. Chem. Thermodyn. 1994, 26, 617–623.
- (40) Blanke, W.; Weiss, R. Virial coefficients of methane-ethane mixtures in the temperature range from 0 to 60° C determined with an automated expansion apparatus. *Int. J. Thermophys.* **1995**, *16*, 643–655.
- (41) Hou, H.; Holste, J. C.; Hall, K. R.; Marsh, K. N.; Gammon, B. E. Second and Third Virial Coefficients for Methane + Ethane and Methane + Ethane + Carbon Dioxide at (300 and 320) K. J. Chem. Eng. Data 1996, 41, 344–353.
- (42) Trautz, M.; Sorg, K. G. Die Reibung, Wärmeleitung und Diffusion in Gasmischungen XVI. Die Reibung von H₂, CH₄, C₂H₆, C₃H₈ und ihren binären Gemischen. Ann. Phys. **1931**, 10, 81–96.
- (43) Abe, Y.; Kestin, J.; Khalifa, H. E.; Wakeham, W. A. The viscosity and diffusion coefficients of the mixtures of four light hydrocarbon gases. *Physica A* **1978**, *93*, 155–170.
- (44) Trautz, M.; Müller, W. Die Reibung, Wärmeleitung und Diffusion in Gasmischungen XXXIV. Neue Messungen von Diffusionskonstanten und abschlieβende Zusammenfassung über Gas-Diffusionskonstanten. Ann. Phys. **1935**, 22, 353–374.
- (45) Weissman, S. Estimation of diffusion coefficients from viscosity measurements: polar and polyatomic gases. J. Chem. Phys. 1964, 40, 3397–3406.
- (46) Gover, T. A. Diffusion of gases: a physical chemistry experiment. *J. Chem. Educ.* **1967**, *44*, 409–411.
- (47) Gotoh, S.; Manner, M.; Sørensen, J. P.; Stewart, W. E. Binary diffusion coefficients of low-density gases. I. Measurements by modified Loschmidt method. J. Chem. Eng. Data 1974, 19, 169–171.
- (48) Arora, P. S.; Robjohns, H. L.; Bell, T. N.; Dunlop, P. J. Use of binary diffusion and second virial coefficients to predict viscosities of gaseous systems. *Aust. J. Chem.* **1980**, *33*, 1993–1996.

- (49) Trusler, J. P. M.; Wakeham, W. A.; Zarari, M. P. Second and third interaction virial coefficients of the (methane + propane) system determined from the speed of sound. *Int. J. Thermophys.* **1996**, *17*, 35–42.
- (50) Barker, J. A.; Linton, M. Second virial coefficients of mixed hydrocarbon vapors. Principle of congruence. J. Chem. Phys. 1963, 38, 1853–1854.
- (51) Bicher, L. B.; Katz, D. L. Viscosities of the methane-propane system. *J. Ind. Eng. Chem* **1943**, *35*, 754–761.
- (52) Giddings, J. G.; Kao, J. T. F.; Kobayashi, R. Development of a highpressure capillary-tube viscometer and its application to methane, propane, and their mixtures in the gaseous and liquid regions. *J. Chem. Phys.* **1966**, *45*, 578–586.
- (53) Beattie, J. A.; Stockmayer, W. H. The second virial coefficient for gas mixtures. J. Chem. Phys. 1942, 10, 473–476.
- (54) Pompe, A.; Spurling, T. H. Virial coefficients for mixtures of gaseous hydrocarbons. CISRO Australia, Div. Appl. Org. Chem. Tech., Paper 3, 1976.
- (55) Kestin, J.; Yata, J. Viscosity and diffusion coefficient of six binary mixtures. J. Chem. Phys. 1968, 49, 4780–4791.
- (56) Pecsok, R. L.; Windsor, M. L. Interaction second virial coefficients of some hydrocarbon gas mixtures from gas-liquid chromatography. *Anal. Chem.* **1968**, 40, 1238–1241.
- (57) Massoudi, R.; King, A. D. Solubility of alcohols in compressed gases. Comparison of vapor-phase interactions of alcohols and homomorphic compounds with various gases. II. 1-Butanol, diethyl ether, and n-pentane in compressed nitrogen, argon, methane, ethane, and carbon dioxide at 25.deg. J. Phys. Chem. 1973, 77, 2016–2018.
- (58) Hamann, S. D.; Lambert, J. A.; Thomas, R. B. The second virial coefficients of some gas mixtures. *Aust. J. Chem.* **1955**, *8*, 149–157.
- (59) Strein, K.; Lichtenthaler, R. N.; Schramm, B.; Schäfer, K. Measurement of the second virial coefficients of some saturated hydrocarbons from 300–500 K. *Ber. Bunsenges. Phys. Chem.* **1971**, *75*, 1308–1313.

- (60) Bellm, J.; Reineke, W.; Schäfer, K.; Schramm, B. Measurements of the second virial coefficients in the temperature range 300–550.deg.K. *Ber. Bunsenges. Phys. Chem.* **1974**, 78, 282–286.
- (61) Baughman, G. L.; Westhoff, S. P.; Dincer, S.; Duston, D. D.; Kidnay, A. J. Solid + vapor phase equilibrium and the interaction second virial coefficients for argon +, nitrogen +, methane +, and helium + neopentane. I. Experimental study. J. Chem. Thermodyn. 1974, 6, 1121–1132.
- (62) Fontalba, F.; Marsh, K. N.; Holste, J. C.; Hall, K. R. A differential Burnett apparatus: excess second virial coefficients for ethane + propane from 273 to 355 K. *Fluid Phase Equilib.* **1988**, *41*, 141–151.
- (63) Küchenmeister, C.; Vogel, E.; Baranski, J. Viscosity of the binary mixture propane-isobutane in the gaseous state. *High Temp. High Press.* 2001, *33*, 659–668.
- (64) Connolly, J. F. Ideality of butane:isobutane solutions. J. Phys. Chem. 1962, 66, 1082–1086.
- (65) Abe, Y.; Kestin, J.; Khalifa, H. E.; Wakeham, W. A. The viscosity of normal butane, isobutane and their mixtures. *Physica A* **1979**, *97*, 296– 305.
- (66) Marrero, T. R.; Mason, T. A. Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1972, 1, 3–118.
- (67) Zarkova, L.; Pirgov, P.; Hohm, U.; Chrissanthopoulos, A.; Stefanov, B. B. Thermophysical properties of tetramethylmethane and tetramethylsilane gas calculated by means of an isotropic temperaturedependent potential. *Int. J. Thermophys.* **2000**, *21*, 1439–1461.

Received for review January 31, 2008. Accepted March 20, 2008. The authors thank the Deutsche Forschungsgemeinschaft for financial support and the Bulgarian academy of sciences for the opportunity to complete this joint research.

JE800073V